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Overview

• Why III-V MOSFETs?
• Device Physics and Scaling Laws
• Process Flow
• Measurements
• Conclusions
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Why III V VLSI?
Higher electron velocities than Si MOS

For short Lg FETs, 

Transconductance, 

Jd and gm are key figures of merit in VLSI

However:
Jd and gm degraded by source large Raccess

Jd and gm degraded by interface trap density, Dit

Therefore, we must develop:
Low access resistance source/drain contacts

Thin, high-k, low Dit dielectrics on InGaAs

Fully self-aligned process modules 

satchannelsdrain vnqJ  ,

sateffectivem vCg 

MOSFETs have been, and always will be, a materials challenge.

1/Ron

Jd,max

gm
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*Ceffective includes Cox, Cdepth, Cdos Electron band diagram of a quantum well FET
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FET Device Scaling

Si CMOS scaling: Contacted gate pitch 4x the gate length1)

4:1 reduction of contact area2)  4:1 reduction of contact

22 nm node  33 nm LS/D  For LS/D = LT, requires 5x10-9 ohm-cm2 contact

sh

c
T R
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 Length Transfer Contact 

Contacted Gate Pitch

LS/D

Lg

WS/D

1)  S. Natarajan, et al, IEDM 2008.
2)  M.J.W. Rodwell, et al, IPRM 2010.
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Gate First FET Process Flow
Thick (10 nm) channel

Process damage mitigation 
Heavy ( ~ 9x1012 cm-2)  doping

Prevents ungated sidewall current choke
In0.52Al0.48As heterobarrier

Carrier confinement
Semi-insulating InP

Device isolation
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Gate First FET Process Flow

Front End: Gate Stack Definition
In-situ hydrogen plasma / TMA treatment before Al2O3 growth
Mixed e-beam / optical lithography
Bi-layer gate (Sputtered W + e-beam evaporated Cr)

High selectivity, low power dry etch
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FET Process Development
Use optical lithography to produce >0.5um gates

Use electron beam lithography to produce sub-100nm gates

Need to investigate possible e-beam damage to oxides

Cr

HSQ (SiO2)

W

Cr
SiO2

EBL Tests

Cr + 
SiNx

SiO2 + 
SiNx

W + 
SiNx

Field: SiNx

Finished Gate Etch + Sidewall Deposition
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FET Process Development

ICP dry etches calibrated to perform at sub-100nm scale

W

HSQ

Cr

Cr

SiO2

W

HSQ

Cr

Cr

SiO2

Increased 
ICP Power

Higher power dry etch  vertical gate stack

Undercutting leads to fallen gates, ungated access regions           
 Minimize Cr undercut by reducing thickness
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Gate First FET Process Flow

Front End: Gate Stack Definition
Sidewall Deposition

Conformal, protects S/D short circuit to gate
Sidewall etch

Vertical gate stack  self aligned sidewall
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FET Process Development
Low power etch  Isotropic etching + undercut   fallen gates
Large undercuts  ungated regions  high Raccess

Thick gate stack:             
Small Lg
Large sidewall foot 
Unreliable gates 

Thin Cr stack:         
Small Lg
Large sidewall foot 
Repeatable gate etch?

ALD SiO2 sidewall:
Small Lg
Still sidewall foot! 
Unrepeatable gate undercut 
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Gate First FET Process Flow

Regrowth and Back End
Surface preparation

UV O3 exposure to clean the source/drain, removed ex-situ before MBE load
MBE InAs Regrowth

Low arsenic flux, high temperature  near gate fill in
Metallization and Mesa Isolation

In-situ Mo in MBE optional for lower c
Ti/Pd/Au liftoff
Wet etch for mesa isolation
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Gate First FET Process Flow

Regrowth Regrowth

Tungsten

Chrome

SiO2

SiNx Sidewalls

TEM micrographs of 60 nm Lg device
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Gate First FET Results

60 nm Lg 115 nm Lg

Increased leakage current:                                      
Heavy doping leakage path                 
Drain induced barrier lowering
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Gate First FET Results
60 nm Lg

High Jdrain but depletion mode 

Transconductance: Similar to previous results* (~0.3mS/m)

Low Ron (371 ohm-m) for InGaAs MOSFETs

1/Ron

*) U. Singisetti et al, IEEE EDL Nov. 2009.
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Gate First FET Results

Jdrain increases rapidly with gate length scaling 

Transconductance: Relatively flat with gate length scaling

*) U. Singisetti et al, IEEE EDL Nov. 2009.

Wg = 9 m
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FET: Access Resistance

Gateless transistor effective diagnostic of regrowth
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Gate First FET: Metal-Regrowth TLM
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Metal-Regrowth access resistance 
is not a limiting factor in Jdrain

Ex-situ Ti/Pd/Au / n-type InAs contacts: c = 2 x 10-8 ohm-cm2

In-situ Mo / n-type InAs contacts have shown c = 6 x 10-9 ohm-cm2 *

Wg = 14 m

*)  M.J.W. Rodwell, et al, IPRM 2010.
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Gate First FET: Issues

Ungated region  potential current choke
Thinner sidewall can help…
… but hard to control with gate undercut

Electron band diagram of channel underneath sidewall
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Gate First FET: Issues

Heavy  doping  parallel conduction, poor gm
Large leakage current in device
Decreases Cdepth  limits gm

doping  109 212  cm doping  no

Must reduce  doping while maintaining low Raccess
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Conclusions
60 nm gate first InGaAs MOSFET process flow

Jdrain exceeding 1.2 mA/m

Low Ron = 371 ohm-m

Self-aligned process flow for sub-100 nm III-V VLSI

Continued research areas
Minimizing ungated regions
Thinner dielectrics
Dit passivation techniques
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Thanks for your time!
Questions?

contact address: adc [at] ece.ucsb.edu
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MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.


