60 nm gate length Al₂O₃ / In_{0.53}Ga_{0.47}As gate-first MOSFETs using InAs raised source-drain regrowth

Andrew D. Carter, J. J. M. Law, E. Lobisser, G. J. Burek, W. J. Mitchell, B. J. Thibeault, A. C. Gossard, and M. J. W. Rodwell ECE Department

University California – Santa Barbara

Device Research Conference 2011 Santa Barbara, California 6/20/2011

Overview

- Why III-V MOSFETs?
- Device Physics and Scaling Laws
- Process Flow
- Measurements
- Conclusions

Why III-V VLSI?

Higher electron velocities than Si MOS For short L_g FETs, $J_{drain} = q \cdot n_{s,channel} \cdot v_{sat}$ Transconductance, $g_m = C_{effective} \cdot v_{sat}$ J_d and g_m are key figures of merit in VLSI

However:

 J_d and g_m degraded by source large R_{access} J_d and g_m degraded by interface trap density, D_{it}

Therefore, we must develop:

Low access resistance source/drain contacts Thin, high-k, low D_{it} dielectrics on InGaAs Fully self-aligned process modules

MOSFETs have been, and <u>always</u> will be, a materials challenge.

FET Device Physics

 $*C_{effective}$ includes C_{ox} , C_{depth} , C_{dos}

Electron band diagram of a quantum well FET

Si CMOS scaling: Contacted gate pitch 4x the gate length¹)

4:1 reduction of contact area²⁾ \rightarrow 4:1 reduction of $\rho_{contact}$

22 nm node \rightarrow 33 nm L_{S/D} \rightarrow For L_{S/D} = L_T, requires 5x10⁻⁹ ohm-cm² $\rho_{contact}$

Contact Transfer Length =
$$L_T = \sqrt{\frac{\rho_c}{R_{sh}}}$$

¹⁾ S. Natarajan, *et al*, IEDM 2008.

²⁾ M.J.W. Rodwell, *et al*, IPRM 2010.

Gate First FET Process Flow

Thick (10 nm) channel

Process damage mitigation

Heavy (~ $9x10^{12} \text{ cm}^{-2}$) δ doping

Prevents ungated sidewall current choke

In_{0.52}Al_{0.48}As heterobarrier Carrier confinement Semi-insulating InP Device isolation

DRC 2011

Front End: Gate Stack Definition

In-situ hydrogen plasma / TMA treatment before Al₂O₃ growth Mixed e-beam / optical lithography Bi-layer gate (Sputtered W + e-beam evaporated Cr) High selectivity, low power dry etch

FET Process Development

Use optical lithography to produce >0.5um gates Use electron beam lithography to produce sub-100nm gates Need to investigate possible e-beam damage to oxides

- 200 nm

Field: SiN_x

FET Process Development

ICP dry etches calibrated to perform at sub-100nm scale

Higher power dry etch \rightarrow vertical gate stack

Undercutting leads to fallen gates, ungated access regions
→ Minimize Cr undercut by reducing thickness

Gate First FET Process Flow

Front End: Gate Stack Definition

Sidewall Deposition

Conformal, protects S/D short circuit to gate

Sidewall etch

Vertical gate stack \rightarrow self aligned sidewall

FET Process Development

Low power etch \rightarrow Isotropic etching + undercut \rightarrow fallen gates Large undercuts \rightarrow ungated regions \rightarrow high R_{access}

p. 11

Gate First FET Process Flow

Regrowth and Back End

Surface preparation

UV O₃ exposure to clean the source/drain, removed *ex-situ* before MBE load

MBE InAs Regrowth

Low arsenic flux, high temperature \rightarrow near gate fill in

Metallization and Mesa Isolation

In-situ Mo in MBE optional for lower ρ_{c}

Ti/Pd/Au liftoff

Wet etch for mesa isolation

TEM micrographs of 60 nm L_g device

Gate First FET Results

Gate First FET Results

High J_{drain} but depletion mode

Transconductance: Similar to previous results^{*} (~0.3mS/ μ m) Low R_{on} (371 ohm- μ m) for InGaAs MOSFETs

Gate First FET Results

J_{drain} increases rapidly with gate length scaling Transconductance: Relatively flat with gate length scaling

MOSFET On Resistance

Gateless Transistor Resistance

Gateless transistor effective diagnostic of regrowth

DRC 2011

Gate First FET: Metal-Regrowth TLM

Ex-situ Ti/Pd/Au / n-type InAs contacts: $\rho_c = 2 \times 10^{-8}$ ohm-cm²

In-situ Mo / n-type InAs contacts have shown $\rho_c = 6 \times 10^{-9}$ ohm-cm² *

Gate First FET: Issues

Ungated region → potential current choke Thinner sidewall can help...

... but hard to control with gate undercut

Electron band diagram of channel underneath sidewall

Gate First FET: Issues

Heavy δ doping \rightarrow parallel conduction, poor g_m Large leakage current in device Decreases $C_{depth} \rightarrow limits g_m$

Must reduce δ doping while maintaining low R_{access}

Conclusions

60 nm gate first InGaAs MOSFET process flow

 $J_{drain}\,\text{exceeding}\,\,\text{1.2}\,\,\text{mA}/\mu\text{m}$

Low $R_{on} = 371 \text{ ohm-}\mu\text{m}$

Self-aligned process flow for sub-100 nm III-V VLSI

Continued research areas Minimizing ungated regions Thinner dielectrics D_{it} passivation techniques

<u>Thanks for your time!</u> Questions?

contact address: adc [at] ece.ucsb.edu

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.