Gate first In_{0.53}Ga_{0.47}As/Al₂O₃ MOSFETs with in-situ channel surface cleaning

Andrew D. Carter, J. J. M. Law, W. J. Mitchell, G. J. Burek, B. J. Thibeault, A. C. Gossard, and M. J. W. Rodwell

> ECE Department University California – Santa Barbara

Electronic Materials Conference 2011 Santa Barbara, California 6/23/2011

<u>Overview</u>

- Why III-V MOSFETs?
- Device Physics
- Device Processing
 - ALD Al₂O₃ with D_{it} passivation
 - Transistor processing
- Measurements
- Conclusions

Why III-V VLSI?

- Higher electron velocities than Si MOS
 - For short L_g FETs, $J_{drain} = q \cdot n_{s,channel} \cdot v_{sat}$
 - Transconductance, $g_m = C_{effective} \cdot v_{sat}$
 - $\,J_{d}$ and g_{m} are key figures of merit in VLSI
- However:
 - $\,\,J_{d}$ and g_{m} degraded by source large R_{access}
 - J_d and g_m degraded by interface trap density, D_{it}
- Therefore, we must develop:
 - Low access resistance source/drain contacts
 - Thin, high-k, low *D_{it}* dielectrics on InGaAs
 - Fully self-aligned process modules

MOSFETs have been, and <u>always</u> will be, a materials challenge.

FET Device Physics

III-V D_{it} Passivation

- Multiple ways to passivate the D_{it} on compound semiconductors

- Sulfur passivation, e.g. $(NH_4)_2S^{-1}$
- GdGaO based dielectrics ²
- In-situ dielectric growth after epitaxial growth ³
- Arsenic capping for *ex-situ* dielectric growth ⁴
- However, these techniques restrict process flow choices
 - Wet treatment \rightarrow *ex-situ* surface oxide formation
 - In-situ deposition \rightarrow gate first process flow only
 - Lack of portability to higher-k dielectrics for scaling

III-V D_{it} Passivation

Cyclic hydrogen plasma / TMA treatments before dielectric growth $\rightarrow D_{it}$ passivation immediately prior to Al₂O₃ growth under vacuum \rightarrow Gate first or gate last process flow compatibility

A.D. Carter et al, APEX, Submitted. *R. Engel-Herbert et al JAP 2010. "False inversion" peak at negative bias → Surface trap response

Quantitative D_{it} information can be calculated from the conductance method^{*}

Ni or W high-k

n-InGaAs

n-type substrate

MOSCAP Structure

III-V D_{it} Passivation

Cyclic hydrogen plasma / TMA treatments before dielectric growth \rightarrow 50 cycle (~5 nm Al₂O₃) growth, 400°C anneal, Ni metallization

Gate First FET Process Flow

- Thick channel
 - Process damage mitigation
- Heavy δ doping
 - Prevents ungated sidewall current choke
 - Depletion mode: 9x10¹² cm⁻² Si doping
 - Enhancement mode: 3x10¹² cm⁻² Si doping
- In_{0.52}Al_{0.48}As heterobarrier
 - Carrier confinement
- Semi-insulating InP
 - Device isolation

Gate First FET Process Flow

Gate Stack Definition

Hydrogen plasma / TMA treatment before Al₂O₃ Optical gate lithography + hard mask

Bi-layer gate

Sputtered W + evaporated Cr High selectivity, low power dry etch Sidewall Deposition

Protects S/D short circuit to gate

Sidewall etch

High-k etch

Surface preparation for regrowth

UV O₃ exposure to partially oxide channel Removed *ex-situ* before MBE load

InGaAs Channel

InAIAs Heterobarrier

Insulating Substrate

בואכ z011

Gate First FET Process Flow

- Regrowth and Back End
 - MBE InAs Regrowth
 - 500°C, low arsenic flux, high temperature \rightarrow near gate fill in
 - Metallization and Mesa Isolation
 - Ti/Pd/Au liftoff, in-situ Mo in MBE optional

Low access resistance from high δ doping

Large DIBL \rightarrow heavy delta doping

Moderate transconductance (~0.35 mS/µm)

$$\rightarrow$$
 Not explained by $g_{m,extrinsic} = \frac{g_{m,intrinsic}}{1 + g_{m,intrinsic}R_s}$

Gate First E-Mode FET Results

Poor on-state current density

→ Ungated/undoped access regions

Gate First E-Mode FET Results

Less DIBL

 \rightarrow Less delta doping

Gate First FET: Issues

Process-induced CV dispersion

Ni electrode: Thermally deposited, no overcoat, 400°C

W electrode: Sputter deposited, SiO₂ overcoat, 500^oC anneal \rightarrow mimics FET processing, regrowth thermal cycle

Increased D_{it} hinders device performance

Gate First FET: Issues

Ungated region → Current choke Thinner sidewall can help...

... but hard to control with gate undercut

EBD of channel underneath sidewall, $3x10^{12}$ cm⁻² δ doping

EMC 2011

Conclusions

- *D_{it}* passivation techniques for III-V MOS devices
- Process flow for gate first Al₂O₃/InGaAs MOSFETs
- Self-aligned process flow for scaled III-V VLSI
- Continued research areas
 - Minimizing ungated regions
 - Thinner dielectrics
 - D_{it} passivation techniques

<u>Thanks for your time!</u> Questions?

contact address: adc [at] ece.ucsb.edu

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.