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 Given adequately low source/drain (S/D) access resistivity and dielectric interface trap density (Raccess < 50 
m,1 and 12102 itD cm-2 eV-1,2 respectively), InGaAs MOSFETs will provide greater on-state current than 
silicon MOSFETs at the same effective oxide thickness (EOT). The access resistance must be obtained in a self-
aligned structure with a contacted gate pitch ~4 times the physical gate length (Lg), e.g. 116 nm at 32 nm Lg,3 while 
control of short channel effects demands that the S/D region depth be only a fraction of gate length; low-resistance, 
ultra-shallow fully self-aligned III-V MOS processes must therefore be developed. Here we report a 60 nm Lg 
In0.53Ga0.47As MOSFET fabricated in a gate-first process with self-aligned raised InAs S/D access regions formed by 
MBE regrowth. The devices have a peak drive current of 1.36 mA/m at Vds = 1.25 V and Vgs = 3 V and an Ron = 
341 ohm-m. To our knowledge this is the lowest Ron and smallest Lg reported to date for In0.53Ga0.47As surface 
channel MOSFETs.4  
 The epitaxial layer structure, grown by molecular beam epitaxy (MBE), has a semi-insulating Fe doped InP 
substrate, 300 nm not intentionally doped (NID) In0.52Al0.48As, 3 nm  In0.52Al0.48As n-type  Si-doped at 19103  cm-3, 
and 10nm NID In0.53Ga0.47As. Prior to atomic layer deposition (ALD) growth of the ~5 nm Al2O3 gate dielectric, the 
surface was treated by repeated hydrogen plasma / trimethylaluminum (TMA) cycles. A 60 nm sputtered W/15 nm 
electron beam evaporated Cr/400 nm PECVD SiO2/15 nm electron beam evaporated Cr gate stack was blanket-
deposited. Gate lengths between 60 nm to 1.3 m were defined by patterning the upper Cr layer with a combination 
of electron beam and optical lithography. A high power inductively coupled (ICP) plasma SF6/Ar etch defined 
vertical pillars in the SiO2 layer. Cl2/O2 ICP etched the Cr, and a SF6/Ar ICP etched the W gate. Etch undercuts in 
the W and Cr layers are less than 10 nm. 25nm SiNx was deposited by PECVD and etched in a CF4/O2 ICP, defining 
gate sidewalls. After gate oxide removal in AZ400K, the semiconductor surface was oxidized by exposure to UV 
ozone and a subsequent removal of this oxide by a 10:1 DI H2O:HCl etch prior to MBE loading. Regrowth of ~50 
nm InAs n-type Si-doped at ~ 20101  cm-3 (~ 19105  cm-3 active doping) was done as outlined in ref. 5. 20 nm Ti / 60 
nm Pd/120 nm Au was lifted off for source-drain metallization, and devices were isolated in a 1:1:25 
H3PO4:H2O2:DI H2O solution.  

Devices were characterized using an Agilent 4155C semiconductor parameter analyzer. A 60 nm Lg / 9 m 
Wg device has a peak drain current density of 1.36 mA/m at Vds = 1.25 V and Vgs = 3 V and an Ron = 341 ohm-m. 
Extrapolated source and drain resistances RS=RD = 153 ohm-m for these devices. Short channel effects and large 
delta doping underneath the channel prevent complete channel depletion. Heavy pulse doping (~ 13101 cm-2) was 
used to overcome Dit-induced channel depletion underneath the ungated sidewall regions, which in turn increased 
device source to drain leakage. The ~60 nm Lg device has a DC transconductance gm of 0.3 mS/m at a VGS = 0.7 V. 
Gate leakage current is < 20 nA/m at all gate biases. The extracted RS=(6.5 mS/m)-1 is too low to explain the 
measured gm =0.3 mS/m; suggesting that the transconductance is instead limited by the thick oxide and large Dit.. 
In conclusion, we have shown a 60 nm Lg Al2O3/InGaAs MOSFET with low Ron and low access resistance. Future 
work will include scaling the gate dielectric EOT, reducing process-damage-induced6 Dit , and reduced width and 
increased carrier concentration in the sidewall regions surrounding the gate. 
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Figure 1: Schematic cross section of the gate first 
MOSFET.  Inset: Energy band diagram across the 

gated channel region of the device.
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Figure 7: Maximum drain current density 
and DC transconductance versus gate 

length for 9µm gate width devices.

J
dr

ai
n  m

ax
 (

m
A

/
m

)
µ

g
m

 m
ax (m

S
/

m
)

µ

Figure 8: Transmission line measurement 
for 14 µm gap width of source-drain 

metalization and InAs regrowth.
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Figure 6: Measured Jdrain versus Vgs (Vds = 1 V) 
and DC transconductance for the 60 nm gate 
length device. Transconductance data is 5% 

weighting smoothed from raw data.
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Figure 5: Ron as a function of gate length 
for 9 µm gate width devices, measured 

at  Vgs = 3 V, Vds = 0 to 0.1 V.

Gate length ( µm) Gap length ( µm)

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1 1.2

V
ds

 (V)

V
gs

: -2V to 3V in 1V steps

g
�µm: 9 

J

W

Figure 4: Jdrain versus Vds for             
115 nm Lg depletion mode device.

d
ra

in
 (

m
A

/µ
m

)

W

Cr

InAs 
Regrowth

Al2O3 InGaAs 

Figure 2: TEM cross section of a gate first MOSFET. 

InAlAs

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1 1.2

J d
ra

in
 (

m
A

/�µ
m

)

V
ds

 (V)

V
gs

: -2V to 3V in 1V steps

W
g
: 9 �µm

Figure 3: Jdrain versus Vds                    
for 60 nm Lg depletion mode device.
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