

1.0-THz f_{max} InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance

Vibhor Jain, Johann C. Rode, Han-Wei Chiang, Ashish Baraskar, Evan Lobisser, Brian J Thibeault, Mark Rodwell ECE Department, University of California, Santa Barbara, CA 93106-9560

Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA 91360

D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015

Outline

- Need for high speed HBTs
- Fabrication
 - Challenges
 - Process Development
- DHBT
 - Epitaxial Design
 - Results
- Summary

Why THz Transistors?

- Refractory emitter contact and metal stack
 - To sustain high current density operation
- Low stress emitters
 - For high yield
- Low base access resistance
 - For improved device f_{max}
- Thin emitter semiconductor

- To enable a wet etched emitter process for reliability and scalability

Fabrication Challenges – Stable refractory emitters

Emitter yield drops during base contact, subsequent lift-off steps

Fabrication Challenges – Base-Emitter Short

For controlled semiconductor undercut

 \rightarrow Thin semiconductor

To prevent base – emitter short

- \rightarrow Vertical emitter profile and line of sight metal deposition
- \rightarrow Shadowing effect due to high emitter aspect ratio

Fabrication Challenges – Base Access Resistance

$$f_{\max} = \sqrt{\frac{f_{\tau}}{8\pi R_{bb}C_{cb}}}$$

$$R_{bb} = \rho_{\text{sh,e}} \cdot \frac{W_e}{12L_e} + \rho_{\text{sh,bc}} \cdot \frac{W_{bc}}{6L_e} + \rho_{\text{sh,gap}} \cdot \frac{W_{gap}}{2L_e} + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$ho_{
m sh\,gap} >>
ho_{
m sh,e},
ho_{
m sh,bc}$$

- Surface Depletion
- Process Damage
- \rightarrow Need for very small W_{gap}
- Small undercut in InP emitter
- Self-aligned base contact

Composite Emitter Metal Stack

- W/TiW metal stack
- Low stress
- Refractory metal emitters
- Vertical dry etch profile

FIB/TEM by E Lobisser

Vertical Emitter

Narrow Emitter Undercut

Epitaxial Design

T(nm)	Material	Doping (cm ⁻³)	Description
10	In _{0.53} Ga _{0.47} As	8·10 ¹⁹ : Si	Emitter Cap
20	InP	5⋅10 ¹⁹ : Si	Emitter
15	InP	2⋅10 ¹⁸ : Si	Emitter
30	InGaAs	9-5⋅10 ¹⁹ : C	Base
13.5	In _{0.53} Ga _{0.47} As	5⋅10 ¹⁶ : Si	Setback
16.5	InGaAs / InAIAs	5⋅10 ¹⁶ : Si	B-C Grade
3	InP	3.6 ⋅10 ¹⁸ : Si	Pulse doping
67	InP	5⋅10 ¹⁶ : Si	Collector
7.5	InP	1⋅10 ¹⁹ : Si	Sub Collector
5	In _{0.53} Ga _{0.47} As	4⋅10 ¹⁹ : Si	Sub Collector
300	InP	2⋅10 ¹⁹ : Si	Sub Collector
Substrate	SI : InP		

Thin emitter semiconductor

 \rightarrow Enables wet etching

Results - DC Measurements

TEM – Wide, misaligned base mesa

RF Data

Base Post Cap

$$C_{cb,post} = \frac{\mathcal{E}_0 \mathcal{E}_r \cdot A_{post}}{T_c}$$

- $C_{cb,post}$ does not scale with L_e
- \rightarrow Adversely effects f_{max} as $L_e \downarrow$
- \rightarrow Need to minimize the $C_{cb,post}$ value

Base Post Cap

$$C_{cb,post} = \frac{\mathcal{E}_0 \mathcal{E}_r \cdot A_{post}}{T_c}$$

- $C_{cb,post}$ does not scale with L_e
- \rightarrow Adversely effects f_{max} as $L_e \downarrow$
- \rightarrow Need to minimize the $C_{cb,post}$ value

Base Metal Resistance

- *R*_{bb,metal} increases with emitter length
- \rightarrow $f_{\rm max}$ decreases with increase in emitter length

Base Metal Resistance

• *R*_{bb,metal} increases with emitter length

 \rightarrow $f_{\rm max}$ decreases with increase in emitter length

Parameter Extraction

Equivalent Circuit

Summary

- Demonstrated DHBTs with peak f_{τ}/f_{max} = 480/1000 GHz
- Small W_{gap} for reduced base access resistance \rightarrow High f_{max}
- Undercut below the base post to reduce C_{cb}
- Narrow sidewalls, smaller base mesa and better base ohmics needed to enable higher bandwidth devices

Thank You

Questions?

This work was supported by the DARPA THETA program under HR0011-09-C-006.

A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415