THz HBTs & sub-mm-wave ICs

Mark Rodwell, UCSB

Co-Authors and Collaborators: Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company

Teledyne IC Design Team: M. Seo, J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company

UCSB HBT Team: J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell Recent Graduates: V. Jain, E. Lobisser, A. Baraskar,

UCSB IC Design Team: S. Danesgar, T. Reed, H-C Park, Eli Bloch

DC to Daylight. Far-Infrared Electronics

How high in frequency can we push electronics ?

(Sub) mm-Wave Bands for Communications

very large bandwidths available \rightarrow large transmission capacity

short wavelengths→ many parallel channels

50-400 GHz Links: ~750 meters Maximum Range

<u>rain</u> 50 mm/hr: 20 dB/km, 30-1000 GHz 150 mm/hr: 50 dB/km, 30-1000 GHz

<u>Clouds, heavy fog:</u> ~(25 dB/km)x(frequency/500 GHz)

<u>90% Humidity</u>: >30 dB/km above 300 GHz nondominant below 250 GHz (Rosker 2007 IEEE IMS)

Short Wavelengths → Mesh Networks

Fresnel zone area \approx wavelength \cdot distance \rightarrow Beam readily blocked

Mesh Networks for Robust Service

mm-Wave / THz Links Need Large Arrays

mm-wave Bands \rightarrow Lots of bandwidth

$$\left(\frac{P_{received}}{P_{transmittel}}\right) = \left(\frac{1}{16\pi^2}\right) \left(\frac{\lambda^2}{R^2}\right) e^{-\alpha R}$$

short wavelength \rightarrow weak signal \rightarrow short range

highly directional antenna \rightarrow strong signal \rightarrow long range

$$\left(\frac{P_{received}}{P_{transmittel}}\right) = \left(\frac{D_t D_r}{16\pi^2}\right) \left(\frac{\lambda^2}{R^2}\right) e^{-\alpha R}$$

narrow beam \rightarrow must be aimed \rightarrow no good for mobile very narrow beam \rightarrow must be precisely aimed \rightarrow too expensive for telecom operators

monolithic beam steering arrays \rightarrow strong signal, steerable

$$\frac{P_{received}}{P_{transmit}} = \frac{N_{receive}N_{transmit}}{16} \frac{\lambda^2}{R^2} e^{-\alpha R}$$

32 x 32 array \rightarrow 60-90 dB increased SNR \rightarrow vastly increased range

Large arrays needed above ~50 GHz for adequate link range and capacity

RADAR / Imaging Needs Watts of Power, Low Noise Figure

...to reach such levels with a solid-state source:

As a function of range, weather, and data rate, effective sub-mm-wave technologies must low noise figure, high transmit power, and/or moderate to large phased arrays

THz Communications Needs High Power, Low Noise

140 GHz, 10 Gb/s spatially scanned network node

340 GHz, 160Gb/s spatially multiplexed (MIMO) backhaul

Real systems with real-world weather & design margins, 500-1000m range: Will require:

3-7 dB Noise figure, 50mW- 1W output/element, 64-256 element arrays → InP or GaN PAs and LNAs, Silicon beamformer ICs

0.1-1 THz Comms Links: No Monolithic Arrays

On-wafer antennas substantial die area, have high losses

For useful directivity, aperture areas are ~ 25 cm². → vastly too large for an IC

0.1-1 THz Comms Links: Discrete LNAs & PAs

Monolithic PAs & LNAs long lines to antennas many dB losses on transmit many dB losses on transmit degraded noise, degraded power

Discrete LNAs and PAs LNAs & PAs: adjacent to antennas losses no longer impair link

Given that we should not integrate the LNA and PA on the beamformer, it is to our benefit to use high-performance GaN & InP LNAs and PAs.

0.1-1 THz Comms Links: Array Design Concepts

Concepts: Robert York, UCSB

THz InP HBTs

THz & nm Transistors: what it's all about

Metal-semiconductor interfaces (Ohmic contacts): <u>very low resistivity</u> Dielectric-semiconductor interfaces (Gate dielectrics---FETs only): <u>thin !</u>

Ultra-low-resistivity (~0.25 Ω - μ m²), ultra shallow (1 nm), ultra-robust (0.2 A/ μ m²) contacts

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Scaling Laws, Scaling Roadmap

scaling laws: to double bandwidth

HBT parameter	change	
emitter & collector junction widths	decrease 4:1	
current density (mA/µm ²)	increase 4:1	
current density (mA/µm)	constant	
collector depletion thickness	decrease 2:1	
base thickness	decrease 1.4:1	
emitter & base contact resistivities	decrease 4:1	

(emitter length L_E)

150	nm de	Vice	
	N.		
provide a second			
	- File		
	1		
	JØ -		
100 nm	ARE STORED		

emitter	128 4	64 2	<mark>32 nm width</mark> 1 Ω·μm² access ρ
base	120 5	60 2.5	30 nm contact width, 1.25 Ω·μm² contact ρ
collector	75 18 3.3	53 36 2.75	37.5 nm thick, 72 mA/μm ² current density 2-2.5 V, breakdown
f_{τ}	730	1000	1400 GHz
f _{max}	1300	2000	2800 GHz
RF-ICs	660	1000	1400 GHz
digital divider	330	480	660 GHz

HBT Fabrication Process Must Change... Greatly

32 nm width base & emitter contacts...self-aligned
32 nm width emitter semiconductor junctions
Contacts:
1 Ω-μm² resistivities

70 mA/μm² current density ~1 nm penetration depths

 \rightarrow refractory contacts

nm III-V FET, Si FET processes have similar requirements

Ultra Low-Resistivity Refractory In-Situ Contacts

In-situ: avoids surface contaminants

<u>Refractor</u>y: robust under high-current operation Low penetration depth, ~1 nm

Contact performance sufficient for 32 nm /2.8 THz node.

HBT Fabrication Process Must Change... Greatly

thinner base metal → excess base metal resistance

Undercutting of emitter ends

{101}A planes: fast

Sub-200-nm Emitter Anatomy

SiN_x

Refractory contact: high-J operation Liftoff Sputter+dry etch→ sub-200nm contact

W

Mo

100 nm

High-stress emitters fall off during subsequent

559 nm

W

222 nm

452 nm

Single sputtered metal has non-vertical etch profile

slide: E. Lobisser. HBT: V. Jain. Process: Jain & Lobisser

Sub-200-nm Emitter Anatomy

SiN,

TiW

W

Mo

100 nm

Hybrid sputtered metal stack for low-stress, vertical profile

W/TiW interfacial discontinuity enables base contact lift-off

Very thin emitter epitaxial ³⁸ layer for minimal undercut

> Semiconductor wet etch undercuts emitter contact

Interfacial Mo blanket-evaporated for low ρ_c

SiNx sidewalls protect emitter contact, prevent emitter-base shorts during liftoff

slide: E. Lobisser. HBT: V. Jain. Process: Jain & Lobisser

RF Data: 25 nm thick base, 75 nm Thick Collector

140 nm wide emitter 380 nm wide collector

Required dimensions obtained but poor base contacts on this run

DC, RF Data: 100 nm Thick Collector

THz InP HBTs From Teledyne

130nm InP DHBTs with ft>0.52THz and fmax >1.1THz M. Urteaga¹, R. Pierson¹, P. Rowell¹, V. Jain², E. Lobisser², M.J.W. Rodwell²
¹Teledyne Scientific Company, Thousand Oaks, CA 93160. ²Department of ECE, University of California, Santa Barbara, CA 93106. E-mail: murteaga@teledyne-si.com

Fig. 2 Common-emitter IV characteristics of 130nm HBT normalized to emitter area

Chart 24

InP HBT: Key Features

512 nm node: high-yield "pilot-line" process, ~4000 HBTs/IC

256 nm node:

Power Amplifiers: <a>>0.5 W/mm @ 220 GHz highly competitive mm-wave / THz power technology

128 nm node:

>500 GHz f_{τ} , >1.1 THz f_{max} , ~3.5 V breakdown breakdown* f_{τ} = 1.75 THz*Volts highly competitive mm-wave / THz power technology

64 nm (2 THz) & 32 nm (2.8 THz) nodes: Development needs major effort, but no serious scaling barriers

1.5 THz monolithic ICs are feasible.

Can we make a 1 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C _{cb} /I _c	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
\rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	f _τ f _{max}	1000 2000	1000 2000	GHz GHz
-	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

0.1-1THz IC Design

III-V MIMIC Interconnects -- Classic Substrate Microstrip

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Line spacings must be ~3*(substrate thickness)

Coplanar Waveguide

40 Gb/s differential TWA modulator driver note CPW lines, fragmented ground plane

35 GHz master-slave latch in CPW note fragmented ground plane

175 GHz tuned amplifier in CPW note fragmented ground plane

If It Has Breaks, It Is Not A Ground Plane !

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.

III-V MIMIC Interconnects -- Thin-Film Microstrip

 \rightarrow no high-Z_o lines

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

- \rightarrow low current capability
- → no high-Z_o lines

InP 150 GHz master-slave latch

InP 8 GHz clock rate delta-sigma ADC

VLSI mm-wave interconnects with ground integrity

negligible ground breaks @ device placements (

still have problem with package grounding

...need to flip-chip bond

Also:

Ground plane at *intermediate level* permits critical signal paths to cross supply lines, or other interconnects without coupling.

(critical signal line is placed above ground, other lines and supplies are placed below ground)

RF-IC Design: Simple & Well-Known Procedures

There are many ways to tune port impedances: microstrip lines, MIM capacitors, transformers Choice guided by tuning losses. No particular preferences.

For BJT's, MAG/MSG usually highest for common-base. \rightarrow preferred topology.

Common-base gain is however reduced by: base (layout) inductance emitter-collector layout capacitance.

Modeling Interconnects: Digital & Mixed-Signal IC's

longer interconnects: **—** *lines terminated in* $Zo \rightarrow no$ *reflections.*

Shorter interconnects: _____ lines NOT terminated in Zo . But they are *still* transmission-lines. Ignore their effect at your peril !

If length << wavelength, or line delay<<risetime, short interconnects behave as lumped L and C.

Design Flow: Digital & Mixed-Signal IC's

2.5-D simulations run on representative lines. various widths, various planes same reference (ground) plane.

Simulation data manually fit to CAD line model effective substrate ε_r , effective line-ground spacing.

Width, length, substrate of each line entered on CAD schematic. rapid data entry, rapid simulation.

Resistors and capacitors: 2.5-D simulation \rightarrow RLC fit RLC model ---or simulation S-parameters --used in simulation.

High Speed ECL Design

Followers associated with inputs, not outputs

Double termination for least ringing, send or receive termination for moderate-length lines, high-Z loading saves power but kills speed.

Current mirror biasing is more compact. Mirror capacitance→ ringing, instability. Resistors provide follower damping.

High Speed ECL Design

Layout: short signal paths at gate centers, bias sources surround core. Inverted thin film microstrip wiring.

Key: transistors in on-state operate at Kirk limited-current. \rightarrow minimizes C_{cb}/I_c delay.

Key: transistors designed for minimum \mathbb{ECL} gate delay*, not peak (f_{τ} , f_{max}). *hand expression, charge-control analysis

Example: 8:1 205 GHz static divider in 256 nm InP HBT.

205 GHz divider, Griffith et al, IEEE CSIC, Oct. 2010

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

ICs in Thin-Film Inverted Microstrip

100 GHz differential TASTIS Amp. 512nm InP HBT

High Frequency Bipolar IC Design

Digital, mixed-signal, RF-IC (tuned) IC designs----at very high frequencies

Even at 670 GHz, design procedures differ little from that at lower frequencies:

Classic IC design extends readily to the far-infrared.

<u>Key considerations: Tuned ("RF") ICs</u> Rigorous E&M modeling of all interconnects & passive elements Continuous ground plane \rightarrow required for predicable interconnect models. Higher frequencies \rightarrow close conductor planes \rightarrow higher loss, lower current

<u>Key considerations: digital & mixed-signal :</u> Transmission-line modeling of <u>all</u> interconnects Continuous ground plane \rightarrow required for predicable interconnect models. Unterminated lines within blocks; terminated lines interconnecting blocks. Analog & digital blocks design to naturally interface to 50 or 75 Ω .

Design Examples, IC Results

InP HBT Integrated Circuits: 600 GHz & Beyond

614 GHz fundamental VCO M. Seo, TSC / UCSB

565 GHz, 34 dB, 0.4 mW output power

amplifier

J. Hacker, TSC

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL M. Seo, TSC IMS 2011

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

220 GHz 90 mW power amplifier T. Reed, UCSB

Digital Logic: 30 GHz to 204 GHz in 12 Years

1998: 30 GHz \rightarrow 48 GHz

2000: 66 GHz

2001: 75GHz

2002: 87GHz

2004: 118 GHz

2004: 142 GHz, 150 GHz

2010: 204 GHz (with Teledyne)

Other InP HBT ICs in Inverted Microstrip

Teledyne InP HBT 256 nm, 512 nm

InP 8 GHz clock rate delta-sigma ADC (Krishnan, IMS 2003)

30 GHz digital SSB mixer / PFD for optical PLL (Bloch, IMS 2012)

10 Gb/s x 6-channel (+/- 12.5, +/- 37.5, +/- 62.5 GHz) WDM receiver IC for coherent optical links (H. Park, in fab)

40 Gb/s coherent optically-phase-locked BSPK optical receiver (Bloch, Park, ECOC 2012)

	an sa tana sa	
DW.	Tind Participation	
	918 - W - 513 - 3	
	MALLY MANDA	

40 Gb/s coherent optically-phase-locked QPSK optical receiver (E. Bloch, in fab)

50 GS/s Track/hold and sample/hold amplifiers Daneshgar, IEEE CSICS Oct. 2012

Teledyne: 560 GHz Common-Base Amplifier IC

34 dB at 565 GHz

TELEDYNE

Psat -3.9 dBm at 560 GHz

1200x230 μm²

J. Hacker et al, Teledyne Scientific SCIENTIFIC COMPANY A Teledyne Technologies Company

Id, mA

130nm 600 GHz Fundamental Oscillators

Output spectrum measurements performed on-wafer using UVA Wafer probes and Virginia Diodes VNA Extender Heads

Single-ended power measurements performed with on-wafer probe coupled to Erickson calorimeter power meter. P_{out} corrected based on measured probe loss at osc. frequency.

TELEDYNE SCIENTIFIC COMPAN^A

M. Seo et al, Teledyne Scientific

90 mW, 220 GHz Power Amplifier

80 90mW P_{out} , mW 60 88mW P_{out} 84mW 40 80mW 72mW 20 62mW 42mW 220GHz operation 0 14 8 10 6 12 n 2 P_{in} , mW 8-cell, 2-stage PA $P_{DC} = 4.46W$

100

90 mW, 220 GHz Power Amplifier

RF output power densities up to 0.5 W/mm @ 220 GHz.

→ InP HBT is a competitive mm-wave / sub-mm-wave power technology.

220 GHz 330mW Power Amplifier Design

220 GHz Vector Modulator / Phase Shifter Design

220 GHz Vector Modulator / Phase Shifter Design

220 GHz Vector Modulator / Phase Shifter Design

9/2012 tapeout; ICs expected 12/2012

Closing

Where Next $? \rightarrow 2$ THz Transistors, 1 THz Radios.

transmitter

receiver

interconnects

circuits

THz and Far-Infrared Electronics

IR today→ *lasers* & *bolometers* → *generate* & *detect*

Far-infrared ICs: <u>classic</u> device physics, <u>classic</u> circuit design

Power, power-added efficiency, noise figure are all very important

fundamental-mode operation, not harmonic generation

The transistors will scale to at least 2 THz bandwidths

Even 1-3 THz ICs will be feasible

(backup slides follow)

At High Frequencies The Atmosphere Is Opaque

Mark Rosker IEEE IMS 2007

Why THz Transistors ? Why THz ICs ?

Communications

