Transistor & IC design for Sub-mm-Wave & THz ICs

Mark Rodwell **University of California, Santa Barbara**

Coauthors:

J. Rode, H.W. Chiang, T. Reed, S. Daneshgar, V. Jain, E. Lobisser, A. Baraskar, J. Law, A. Carter, S. Lee, D. Elias, B. J. Thibeault, B. Mitchell, S. Stemmer, A. C. Gossard, **UCSB**

Munkyo Seo, Jonathan Hacker, Adam Young, Zach Griffith, Richard Pierson, Miguel Urteaga, **Teledyne Scientific Company**

DC to Daylight. Far-Infrared Electronics

How high in frequency can we push electronics ?

Video-resolution radar \rightarrow fly & drive through fog & rain

near-Terabit optical fiber links

100-1000 GHz Systems

100-1000 GHz Wireless Has High Capacity

short wavelengths \rightarrow many parallel channels

100-1000 GHz Wireless Needs Phased Arrays

isotropic antenna \rightarrow weak signal \rightarrow short range

highly directional antenna \rightarrow strong signal, but must be aimed

$$\left(\frac{P_{received}}{P_{transmitted}}\right) \propto D_t D_r \left(\frac{\lambda^2}{R^2}\right) e^{-\alpha R}$$

no good for mobile

must be precisely aimed \rightarrow too expensive for telecom operators

beam steering arrays \rightarrow strong signal, steerable

32-element array \rightarrow 30 (45?) dB increased SNR

100-1000 GHz Wireless Needs Mesh Networks

100-1000 GHz Wireless Has Low Attenuation ?

Low attenuation on a sunny day

100-1000 GHz Wireless Has High Attenuation

50-500 GHz links must tolerate ~30 dB/km attenuation

Olsen, Rogers, Hodge, IEEE Trans Antennas & Propagation Mar 1978 Liebe, Manabe, Hufford, IEEE Trans Antennas and Propagation, Dec. 1989

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

600 meters range in five-9's rain

Realistic packaging loss, operating & design margins

PAs: 30 dBm P_{sat} (per element)→ GaN or InP LNAs: 4 dB noise figure → InP HEMT

340 GHz, 160 Gb/s MIMO Backhaul Link

340 GHz, 160 Gb/s MIMO Backhaul Link

1° beamwidth; 8° beamsteering 600 meters range in five-9's rain Realistic packaging loss, operating & design margins PAs: 21 dBm P_{sat} (per element)→ InP LNAs: 7 dB noise figure → InP HEMT

100-1000 GHz Wireless Transceiver Architecture

III-V LNAs, III-V PAs → power, efficiency, noise Si CMOS beamformer→ integration scale

...similar to today's cell phones.

Why THz Transistors ?

THz Transistors: Not Just For THz Circuits

Frequency, Hz

THz InP HBTs

THz & nm Transistors: what it's all about

Metal-semiconductor interfaces (Ohmic contacts): <u>very low resistivity</u> Dielectric-semiconductor interfaces (Gate dielectrics---FETs only): <u>thin !</u>

Ultra-low-resistivity (~0.25 Ω - μ m²), ultra shallow (1 nm), ultra-robust (0.2 A/ μ m²) contacts

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Scaling Laws, Scaling Roadmap

scaling laws: to double bandwidth

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

(emitter length L_E)

	150 nm device
ρ	
density	
	100 nm

emitter	128	64	<mark>32 nm width</mark>
	4	2	1 Ω·μm² access ρ
base	120	60	<mark>30 nm contact width,</mark>
	5	2.5	1.25 Ω·μm² contact ρ
collector	75	53	37.5 nm thick,
	18	36	72 mA/μm² current density
	3.3	2.75	2-2.5 V, breakdown
f _τ	730	1000	1400 GHz
f _{max}	1300	2000	2800 GHz
RF-ICs	660	1000	1400 GHz
digital divider	330	480	660 GHz

HBT Fabrication Process Must Change... Greatly

32 nm width base & emitter contacts...self-aligned
32 nm width emitter semiconductor junctions
Contacts:
1 Ω-μm² resistivities

70 mA/μm² current density ~1 nm penetration depths

 \rightarrow refractory contacts

nm III-V FET, Si FET processes have similar requirements

Needed: Greatly Improved Ohmic Contacts

Interface barrier \rightarrow resistance

Further intermixing during high-current operation \rightarrow degradation

Ultra Low-Resistivity Refractory In-Situ Contacts

Low penetration depth, ~ 1 nm Contact performance sufficient for 32 nm /2.8 THz node.

Refractory Emitter Contacts

Мо

negligible penetration

HBT Fabrication Process Must Change... Greatly

thinner base metal → excess base metal resistance

Undercutting of emitter ends

{101}A planes: fast

Sub-200-nm Emitter Anatomy

SiN_x

Refractory contact: high-J operation Liftoff Sputter+dry etch \rightarrow sub-200nm contacts

W

Mo

100 nm

High-stress emitters fall off during subsequent lift-offs

452 nm

Single sputtered metal has non-vertical etch profile

slide: E. Lobisser. HBT: V. Jain. Process: Jain & Lobisser

Sub-200-nm Emitter Anatomy

Hybrid sputtered metal stack for low-stress, vertical profile

W/TiW interfacial discontinuity enables base contact lift-off

Very thin emitter epitaxial layer

Semiconductor wet etch undercuts emitter contact

Interfacial Mo blanket-evaporated for low ρ_c

SiNx sidewalls protect emitter contact, prevent emitter-base shorts during liftoff

slide: E. Lobisser. HBT: V. Jain. Process: Jain & Lobisser

Sub-200-nm Emitter Anatomy

emitter-base gap: only ~10 nm → greatly reduces link component of R_{bb}

slide: E. Lobisser. HBT: V. Jain. Process: Jain & Lobisser

RF Data: 25 nm thick base, 75 nm Thick Collector

Required dimensions obtained but poor base contacts on this run

DC, RF Data: 100 nm Thick Collector

THz InP HBTs From Teledyne

Fig. 2 Common-emitter IV characteristics of 130nm HBT normalized to emitter area

Fig. $4 f_t$ and f_{max} versus collector current at varying values of V_{CE} for 0.13x2 μ m² HBT

Chart 33

Towards & Beyond the 32 nm /2.8 THz Node

Base contact process:

Present contacts too resistive (4 Ω – μ m²) Present contacts sink too deep (5 nm) for target 15 nm base

→ refractory base contacts

Emitter Degeneracy:

Target current density is almost 0.1 Amp/µm² (!) Injected electron density becomes degenerate. transconductance is reduced.

→ Increased electron mass in emitter

Refractory Base Process (1)

base surface not exposed to photoresist chemistry: no contamination low contact resistivity, shallow contacts low penetration depth allows thin base, pulsed-doped base contacts

Refractory Base Process (2)

Ru / Ti / Au

<2 nm Ru contact penetration

(surface removal during cleaning)

At & beyond 32 nm, we must increase the emitter effective mass.

Degenerate Injection→Solutions

At & beyond 32 nm, we must increase the emitter (transverse) effective mass.

Other emitter semiconductors: no obvious good choices (band offsets, etc.).

Emitter-base superlattice:

increases transverse mass in junction evidence that InAIAs/InGaAs grades are beneficial

Extreme solution (10 years from now):

partition the emitter into small sub-junctions, \sim 5 nm x 5 nm. parasitic resistivity is reduced progressively as sub-junction areas are reduced.

IC Results

InP HBT Integrated Circuits: 600 GHz & Beyond

614 GHz fundamental VCO ^{M. Seo,}

565 GHz, 34 dB, 0.4 mW output power

amplifier

J. Hacker, TSC

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL M. Seo, TSC IMS 2011

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

220 GHz 90 mW power amplifier T. Reed, UCSB

600 GHz Integrated Transmitter PLL + Mixer M. Seo

Teledyne: 560 GHz Common-Base Amplifier IC

Chart 46

- 10-Stage Common-base using inverted CPW-G architecture
- •34 dB at 565 GHz
- •Psat -3.9 dBm at 560 GHz

1200x230 μm²

J Hacker et al, Teledyne Scientific

90 mW, 220 GHz Power Amplifier

Reed (UCSB) and Griffith (Teledyne): CSIC 2012 Teledyne 250 nm InP HBT 20 3dB bandwidth = 240GHz Amplifier gains (dB) -1 0 10 S 21,mid-band = 15.4dB -10 $P_{DC} = 4.46W$ 210 220 230 240 250 260 frequency (GHz) 8-cell, 2-stage PA

RF output power densities up to 0.5 W/mm @ 220 GHz.

→ InP HBT is a competitive mm-wave / sub-mm-wave power technology.

220 GHz 330mW Power Amplifier Design

50-G/s Track/Hold Amplifier; 250 nm InP HBT

S. Daneshgar, this conference

Where Next $? \rightarrow 2$ THz Transistors, 1 THz Radios.

transmitter

receiver

interconnects

circuits

THz and Far-Infrared Electronics

IR today \rightarrow lasers & bolometers \rightarrow generate & detect

Far-infrared ICs: <u>classic</u> device physics, <u>classic</u> circuit design

It's all about classic scaling: contact and gate dielectrics...

....wire resistance,...heat,...

...& charge density. band structure and density of quantum states (new!). Even 1-3 THz ICs will be feasible

(backup slides follow)

Weakly Degenerate → Effective Added Resistance

At & beyond 32 nm, we must increase the emitter effective mass.

HBT Scaling Roadmap

emitter	128	64	<mark>32 nm wi</mark> dth
	4	2	1 Ω·μm² access ρ
base	120	60	30 nm contact width,
	5	2.5	1.25 Ω·μm ² contact ρ
collector	75	53	37.5 nm thick,
	18	36	72 mA/μm² current density
	3.3	2.75	2-2.5 V, breakdown
f _τ	730	1000	1400 GHz
f _{max}	1300	2000	2800 GHz
RF-ICs	660	1000	1400 GHz
digital divider	330	480	660 GHz

140 nm Device: RF Results

140 nm emitter junction 120 nm wide base contacts

75 nm thick collector 25 nm thick base

f_{max} impaired (780 GHz) : *excessive contact penetration into base*

Chiang & Rode unpublished

DC to Daylight. Far-Infrared Electronics

How high in frequency can we push electronics ?

