Contact Resistance Limits of Ohmic Contacts to Thin Semiconductor Channels

<u>Jeremy J. M. Law^{1, 2}, Andy D. Carter, Sanghoon Lee, Arthur C. Gossard, Mark J. W. Rodwell</u> ¹ Department of Electrical and Computer Engineering ² Materials Departments University of California, Santa Barbara, CA

Introduction:

- InGaAs MOSFETs need contact resistance of < 10 Ω µm for $L_g=L_c=20 nm^1$
- We show epitaxially regrown source-drain contacts as low as 65 Ω μm to thin channels and 12.5 Ω μm to thick channels
- There is a minimum measurable contact resistance for a given n_s (channel thickness)
- Limit independent of material system & should not impact transistor performance

Our Approach:

- •Homoepitaxial regrowth \rightarrow best regrowth-channel contact resistance
- •InAs \rightarrow best metal-regrowth contact resistance²
- •Demonstrate existence of relationship between channel n_s and contact resistance extraction

² A. Baraskar et al, IPRM (2010).

Contact Resistance Limits of Ohmic Contacts to Thin Semiconductor Channels

Experimental Details:

- Channels of varying n_s grown by MBE
 - 15 nm InAs and 100 nm n^+ InGaAs channel
- Homoepitaxial regrowth by MBE
 - n^+ InAs and graded n^+ InGaAs to n^+ InAs
- TLM for contact resistance measurement

Experimental Results

Thickness	Regrowth	R _{RG-C} (Ω μm)	R _{M-RG} (Ω μm)
15 nm InAs	n+ InAs	~ 65 (130 R _{S+D})	~ 3.0
100 nm n⁺ In _{0.53} Ga _{0.47} As	Graded from n ⁺ In _{0.53} Ga _{0.47} As to n ⁺ InAs	~ 12.5	~ 3.0

Theory Results:

- 15 nm InAs device: theoretical min. R_c =80 $\Omega \mu m$
- Our regrowth is within a factor of 2 of this limit
- 2-D generalization from Landauer:*

$$G = \frac{q^2 2^{1/2}}{\hbar \pi^{3/2}} \sum_{i} n_{s,i}^{1/2}$$

*R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

Contact Resistance Limits of Ohmic Contacts to Thin Semiconductor Channels

Conclusions:

- There is a minimum measurable contact resistance from a TLM structure
- $R_{C,min}$ is a function of channel sheet carrier density
- Limit applies to all materials systems not just In_xGa_{1-x}As
- Minimum resistance is *not* an additional parasitic resistance if integrated into an FET
- n^+ InAs regrowth $R_S + R_D = 130 \ \Omega \ \mu m$ is within a factor of 2 of theoretical 80 $\Omega \ \mu m$
- Graded regrowth not limited by n_s shows $R_s = R_D = 12.4 \Omega \mu m$

TLM extraction of R_c on channels with small n_s not representative of contact resistance

Poster No: Mo1200

Acknowledgements

Semiconductor Research Corporation