Regrown Ohmic Contacts to In_xGa_{1-x}As Approaching the Quantum Conductivity Limit

Jeremy J. M. Law,^{a,b} Andy D. Carter,^a Sanghoon Lee,^a Arthur C. Gossard,^{a,b} and Mark J. W. Rodwell^a

a) Department of Electrical and Computer Engineering, University of California, Santa Barbara

b) Materials Department, University of California, Santa Barbara

Outline

- Motivation
- Ballistic FET Current and TLM Quantum Conductance
- Process Flow
- Sample Structures
 - Regrowth TLM (RGTLM)
 - Transmission Line Measurement (TLM)
- Results
 - Metal-semiconductor (TLM)
 - Metal-semiconductor and semiconductor-channel (RGTLM)
- Theory Comparison
- Conclusion

Motivation

- Two interfaces of interest
 - Metal-regrowth interface
 - Regrowth–channel interface
- Sheet resistance of regrowth
- Sheet resistance of ungated region
- Must ascertain contribution to overall access resistance from all of above

FET Ballistic Current = TLM Quantum Conductance

- Fundamental limits to contact resistance to a two-dimensional channel?
- Quantum limited contact resistance^{1, 2} equivalent to ballistic transconductance

¹ P. M. Solomon et al., IEDM Tech. Dig., 1989, p. 405; ² J Guo et al., IEEE Elec. Dev. Lett. 33, 525 (2012).

Regrowth TLM (RGTLM) Process Flow

- Understand source (regrowth) to channel interface
- Rudimentary process flow
- Approximates FET structure and process flow
 - -Independent of high-k properties
- Four-point Kelvin measurement

TLM Process Flow

- Understand metal to source (regrowth) interface
- Rudimentary process flow
- Can be done on same die as RGTLM
- Four-point Kelvin measurement

Sample Structures: TLM

 $In_{0.53}Ga_{0.47}As \rightarrow InAs RG on 100$

nm n^+ In_{0.53}Ga_{0.47}As channel

InAs RG on δ -doped 15 nm InAs channel

TLM Results

Slope: 7.4 Ω ; Intercept/2: 4.6 Ω - μ m

Sample Structures: RGTLM

S.I. InP substrate

 $\begin{array}{l} \text{In}_{0.53}\text{Ga}_{0.47}\text{As} \rightarrow \text{InAs RG on 100} \\ \text{nm n^{+} In}_{0.53}\text{Ga}_{0.47}\text{As channel} \end{array}$

Regrowth TLM Results

Results Summary

- Contact resistance to thin channels (small n_s) limited by quantum conductance
- Low contact resistance of 12.7 Ω - μ m (11.1 Ω - μ m²)
- Contact resistance low n_s channels 136.4 Ω - μ m close to theoretical 80 Ω - μ m

N⁺ Regrowth				
Composition	InAs	InAs	InAs	In _{0.53} Ga _{0.47} As → InAs
Thickness	60 nm	60 nm	60 nm	60 nm
Doping	5-10×10 ¹⁹ cm ⁻³	5-10×10 ¹⁹ cm ⁻³	5-10×10 ¹⁹ cm ⁻³	5-10×10 ¹⁹ cm ⁻³
Sheet Resistivity	23.8 Ω	7.4 Ω	19.3 Ω	11.3 Ω
Channel				
Composition	In _{0.53} Ga _{0.47} As	In _{0.53} Ga _{0.47} As	InAs	In _{0.53} Ga _{0.47} As
Thickness	25 nm	100 nm	15 nm	100 nm
Doping	9×10 ¹² cm ⁻²	3-5×10 ¹⁹ cm ⁻³	9×10 ¹² cm ⁻²	3-5×10 ¹⁹ cm ⁻³
Sheet Resistivity	540 Ω	32 Ω	269 Ω	15 Ω
Access Resistivity	120.8 Ω–μm	55.6 Ω–μm	68.2 Ω–μm	12.7 Ω–μm
Metal/Regrowth Contact Resistivity	2.1 Ω—μm 0.2 Ω—μm²	4.6 Ω–μm 1.5 Ω–μm²	3.0 Ω–μm 0.4 Ω–μm²	3.0 Ω–μm 0.8 Ω–μm²

Conclusion

- Ballistic FET current equivalent to quantum conductance of TLM
- Should not add to FET contact resistance
- Material independent, i.e. true for all semiconductor materials
- Metal–regrowth contact resistance is small portion of overall R_c

– ~ 3.0 Ω–μm (1.0 Ω–μm²)

- Regrown ohmic contacts (136 $\Omega\text{-}\mu\text{m}$) within a factor of 2 of theoretical 80 $\Omega\text{-}\mu\text{m}$
- 12.7 Ω - μ m (11.1 Ω - μ m²⁾ is true measure of interface properties – This includes regrowth to channel and metal to regrowth

Backup slides

MBE Regrowth by Migration Enhance Epitaxy (MEE)

MBE Regrowth: Close to 2-D Quantum conductivity Limit:

Unidirecti onal 2D density of states : $c_{dos,1} = q^2 gm^* / 2\pi\hbar^2$ Charge density in left - moving states : $\rho_{s1} = c_{dos,1}V_{f1}$ Leftward - moving Fermi Velocity : $E_{f1} = qV_{f1} = m^* v_{f1}^2 / 2 \rightarrow v_{f1} = \sqrt{2qV_{f1}/m^*}$ Mean leftward electron velocity : $\overline{v_1} = (4/3\pi)v_{f1} = (4/3\pi)\cdot\sqrt{2qV_{f1}/m^*}$ Leftward current : $J_1 = \rho_{s1} \overline{v_1} = c_{dos,1}V_{f1}(4/3\pi)\cdot\sqrt{2qV_{f1}/m^*}$ Total current : $J = c_{dos,1} \cdot \left(\frac{4}{3\pi}\right) \cdot \sqrt{\frac{2q}{m^*}} \cdot \left(V_{f1}^{3/2} - V_{f2}^{3/2}\right)$ Conductivi ty $G = \partial J / \partial V_f = c_{dos,1} \cdot \left(\frac{4}{3\pi}\right) \cdot \sqrt{\frac{2q}{m^*}} \cdot \frac{3}{2} \cdot V_f^{1/2}$

Red States : charge moving in + x direction; left to right Blue States : charge moving in - x direction; right to left Energies taken relative to conduction band minimum in 2 - D channel.

$$G_{valley} = \frac{q^2}{\hbar} \cdot \frac{2^{1/2}}{\pi^{3/2}} \cdot n_{s,valley}^{1/2} \text{ including spin degeneracy.}$$

Total conductivity found by summing over valle ys and vertical eigenstate s

UCSB regrowth resistance measurements are being limited by this effect