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Abstract — We calculate minimum feasible contact resistivities 

to n-type and p-type InAs and In0.53Ga0.47As. Resistivities were 
calculated for a range of Schottky barrier heights as well as for 
the case where the transmission probability is unity (Landauer 
limit). Calculations are compared with recent experimental data. 
Experimental contact resistivities for n-In0.53Ga0.47As and n-InAs 
lie within 2.5:1 of calculated resistivities given generally accepted 
values of Schottky barrier potential. Computed resistivities in the 
presence of a barrier are only 3.5:1 to 4:1 above Landauer limits.  

Index Terms — Contact resistivity, Landauer limit, metal 
semiconductor junctions, Schottky barrier, transmission 
probability. 

I. INTRODUCTION 

Low-resistivity metal-semiconductor contacts are 
fundamental to the scaling of transistors in both nm VLSI and 
sub-mm-wave/THz applications [1, 2]. In high-frequency 
transistors, the conductivity and operating current densities of 
contacts must both increase in proportion to the square of 
operating frequency. Similar scaling is required of MOSFET 
source/drain contacts in VLSI because of decreasing S/D 
contact pitch and of increasing drain current per unit gate 
width. Improved contacts are under development for both 
group IV and III-V compound semiconductors. Degenerate 
active carrier concentration, Schottky barrier height, and 
semiconductor surface preparation are the primary factors that 
determine contact resistivity [3, 4, 5]. Contact resistivity is 
determined by finite values of transmission probability T, 
electron velocity and density of available conduction states. 
For T = 1, this lower limit is known as the Landauer quantum 
conductivity limit. Here we compare published InGaAs and 
InAs contact resistivity data with calculations of contact 
resistivity both in the presence of an interfacial Schottky 
barrier and in the Landauer limit. We find that experimental 
contact resistivities for n-In0.53Ga0.47As and n-InAs lie within 
2.5:1 of calculated resistivities given generally accepted values 
of Schottky barrier potential. Further, computed resistivities in 
the presence of a barrier are only 3.5:1 to 4:1 above Landauer 
limits.  

II. CURRENT DENSITY AND CONTACT RESISTIVITY 

CALCULATIONS 

We first present the methods used here to calculate contact 
resistivity. Assuming conservation of transverse momentum 
and total energy, the net current density crossing the metal-
semiconductor interface is [6] 
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where 
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k ,
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k and 
sz

k are the wave vectors in the 

semiconductor in x , y  and z  (transport) directions,  
sz

v  is 

the z component of the electron group velocity in the 

semiconductor, and T  is the interface transmission probability. 
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We approximate the metal's kE − dispersion relationship as 
a single parabolic band with conduction band energy 

cm
E . For 

a semiconductor with parabolic energy dispersion, the total 
electron energy is  

)(
2

222
2

szsysx

s

R
kkk

m
qE +++=

h
φ , (3) 

where 
R

qφ
cmcs

EE −=  is the difference between the metal and 

semiconductor conduction band energies, 
s

m  is the electron 

mass in the semiconductor. Energies are computed relative to 

cm
E .  

The electron group velocity is given by 
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From equations (2), (3) and (4), 
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Figure 1: (a) Schematic of the theoretical and modeled potential 

barrier. (b) Detailed schematic of the modeled potential barrier. (c) 

Schematic of a step potential energy barrier. 
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Equation (6) gives the contact resistivity for the case of 

parabolic bands. 
For a semiconductor with non-parabolic energy dispersion, 

the total electron energy is approximately [7] 
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from which we find 
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where α  is the non-parabolicity factor. The group velocity is 

then  
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from which we find the contact resistivity given non-parabolic 

bands, 

kTmπ

q

ρ
sc

2

2

2

1 h
=  

∫ ∫
∞=

−∞=

∞=

=








 +
+

















 −
+








 −
⋅

×
st

st

sz

sz

k

k

k

k

s

szst

szszstst

fs

fs

m

kk

dkkdkk

kT

EE

kT

EE
T

0

2/1
222

2

)(2
1exp1

exp

hα
. (10) 

A. Calculation Of Transmission Probability,  

The Wentzel-Kramers-Brillouin (WKB) approximation is 
frequently used to calculate metal-semiconductor interface 
transmission probability [8]. This approximation breaks down 
at the regions close to the maximum of the potential energy 
barrier and neglects quantum mechanical reflection at the 
metal-semiconductor interface. These limitations are important 
in modern heavily-doped junctions where the tunneling 
probability approaches unity.  

Here we have calculated the exact transmission coefficient, 
including quantum mechanical reflection and valid in all 
energy ranges. From the combined effects of depletion region 
electrostatics and image-force, the semiconductor band energy 

cs
E is first computed as a function of position.    This is then fit 
to a piecewise-linear approximation (fig. 1(a)). For 

1
0 dz << ,  

cs
E  is fit to the peak barrier potential.  In the region 

21
dzd << , the magnitude 

max
E and location  (

i
zz = ) of the 

point of maximum field in the depletion region is first 
calculated.  

cs
E  is then  approximated for 

21
dzd <<  with a 

first-order linear potential fit  of field 
max

E  passing through the 
point 

i
zz = . 

Schrodinger's equation is then solved using Airy functions.  
An infinitesimal gradient 

Bn
qφδ  is introduced in the 

1
0 dz <<  

region (fig. 1(b)) as it facilitates the use of Airy functions in 
this region. The Airy function solutions are valid in all the 
energy ranges [9] i.e. ∞<< Eq

R
φ  making the calculations 

less cumbersome. If a barrier with constant potential energy 
was chosen for this region (

1
0 dz << ), it would require 

solutions of Schrodinger equations for 

BnR
qEq φφ << ,

Bn
qE φ=  and

Bn
qE φ> , making the 

calculations tedious. The detailed calculations of transmission 
probability are presented in [10]. 

It must be noted that the present calculations neglect band 
gap narrowing arising from heavy doping. Treatment of the 
metal kE − dispersion relationship as a single parabolic band 
introduces errors in the metal-semiconductor interface 
reflection probability. This limitation should be addressed in 
future work.    



 

B. Landauer Contact Resistivity 

In modern III-V transistors serving high-frequency 
applications, under the contacts a semiconductor doping of 

19105× cm
-3 

to 20101× cm
-3 

is typical. For In0.53Ga0.47As and 
InAs, where 

Bn
φ  is small (<0.2 V), the associated depletion 

depths are 1 nm or less, and tunneling probability through the 
barrier potential--even if the barrier energy is positive-- is high. 
In such cases, contact resistivity remains nonzero because of 
quantum mechanical reflection at the interface, finite electron 
velocity and finite density of energy states available for 
electron transport.  

Contact resistivity can be expressed as the inverse of the 
product of the density per unit area, conductivity hπ/2q , and 
transmission probability T of available 1-D Landauer 
conduction channels. In the Landauer limit, T = 1 and 
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III. RESULTS AND DISCUSSION 

Figure 2 compares calculated contact resistivities for 
parabolic and non-parabolic bands for n-InAs. A step-potential 
barrier (fig. 1(c)) was assumed. Resistivities lie slightly above 
Landauer limits because of interface quantum reflectivity; 
parabolic and non-parabolic bands show differing 

)(
csfs

EE − and hence differing interface reflectivity. At a given 
electron concentration, Landauer contact resistivities are 
slightly lower in Si than in Γ-minima InAs because of the 
multiple band minima and the anisotropic bands.  
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Figure 2: Landauer contact resistivity: for a single isotropic band and 

for (100) Si, and resistivity of InAs contact with a step-potential 

interface. 

For Schottky tunnel barriers (fig. 1(b)), T  was calculated 
assuming parabolic bands. Contact resistivities were calculated 
(fig. 3) and compared with published experimental data for n-
In0.53Ga0.47As, p-In0.53Ga0.47As, n-InAs and p-InAs, as a 
function of electron/hole concentration and barrier height

B
φ . 

We had earlier reported ultra-low contact resistivities obtained 
for n-InAs, n-In0.53Ga0.47As and p-In0.53Ga0.47As [11, 12, 13]. 
The contact resistivities were (0.6 ± 0.4) × 10

-8 
Ω-cm

2
, (1.1 ± 

0.5) × 10
-8 

Ω-cm
2
 and (0.6 ± 0.5) × 10

-8 
Ω-cm

2 
for n-InAs, n-

In0.53Ga0.47As and p-In0.53Ga0.47As, respectively, which are the 
lowest contact resistivities reported to date for these 
semiconductors. 
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 (c)   (d) 

Figure 3: Calculated dependence (represented by lines) of contact 

resistivities )( cρ  on bulk electron/hole concentration and Schottky 

barrier height )( Bφ  for (a) n-In0.53Ga0.47As (b) p-In0.53Ga0.47As (c) n-

InAs and (d) p-InAs. Experimental data from the literature is shown 

for comparison.  

Computed contact resistivities show the expected strong 
dependence on electron/hole concentration and on 

B
φ . Even 

for contacts formed by in-situ deposition of refractory metals 
[11, 12, 13], where interfaces are expected to have an 
oxide/contaminant free metal-semiconductor interface, 
experimental resistivities of n-type contacts lie above theory 
given generally reported values of barrier potential. Measured 
contact resistivity to n-In0.53Ga0.47As at 19105× cm

-3
 electron 

concentration is 2.3:1 higher than calculated assuming 
B
φ = 0.2 

eV, while measured contact resistivity to n-InAs at 2010 cm
-3

 
electron concentration is 1.9:1 higher than calculated assuming 

B
φ = 0 eV. In contrast, measured contact resistivity to p-



 

In0.53Ga0.47As at 20102.2 × cm
-3

 hole concentration correlates 
well with theory if 

B
φ = 0.6 eV is assumed.  

Calculations also show the degree to which the Schottky 
barrier increases contact resistivity. Computed contact 
resistivity for n-In0.53Ga0.47As at 19105× cm

-3
 electron 

concentration and 
B
φ = 0.2 eV is only 3.9:1 larger than the 

Landauer limit, while computed resistivity of n-InAs at 
2010 cm

-3
 electron concentration and 

B
φ = 0 eV is only 3.6:1 

larger than Landauer limit. For p-In0.53Ga0.47As at 
20102.2 × cm

-3
 hole concentration and 

B
φ = 0.6 eV, computed 

resistivity lies 13:1 above the Landauer limit; the tunneling 
probability remains low. 

Assuming that such electron/hole concentration levels can be 
made feasible, contact resistivity will approach 910− Ω -cm

2
 as 

electron/hole concentration is increased to ~ 2110 cm
-3

, both 
because of increased Landauer conductivity and increased 
contact transmission probability. Noting the curves for 

B
φ = 0 

eV in fig. 3(a) and 3(c), it is seen that for n-In0.53Ga0.47As and 
n-InAs contacts, because of interface quantum reflectivity, 
contact resistivities do not drop far below 910− Ω-cm

2
 even for 

electron concentration approaching 2110 cm
-3

.  
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