InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced *C*_{cb} and Increased RF Cut-off Frequency

Evan Lobisser^{*1}, Johann C. Rode², Vibhor Jain³, Han-Wei Chiang², Ashish Baraskar⁴, William J. Mitchell², Brian J. Thibeault², Mark J. W. Rodwell², M. Urteaga⁵, D. Loubychev⁶, A. Snyder⁶, Y. Wu⁶, J. M. Fastenau⁶, A. W. K. Liu⁶

¹⁻⁴Dept. of ECE, University of California, Santa Barbara, CA 93106, USA

(now with ¹Agilent Technologies, Inc., CA; ³IBM Corporation, VT; ⁴GlobalFoundries, NY)

⁵Teledyne Scientific & Imaging, Thousand Oaks, CA 91360, USA

⁶IQE Inc., Bethlehem, PA 18015

High-frequency InP HBTs enable high-speed digital logic, mixed-signal, and sub-mm wave integrated circuits [1]. Increases in RF performance in HBTs can be achieved through epitaxial thinning of the base and collector junction thicknesses, T_b and T_c , lithographic narrowing of the emitter and base mesa widths, W_e and W_b , and reduction of the resistances associated with the emitter and base, R_{ex} and R_{bb} .

We report here InP DHBTs fabricated using a JEOL 6300FS electron-beam lithography system to define $W_e = 150$ nm emitter junctions and 150 nm base contacts on each side of the emitter, using novel positive and negative tone e-beam photoresist processes. Emitter-base misalignment is < 25 nm, and total base mesa width $W_b = 450$ nm, the narrowest reported to date. Small base-to-emitter misalignment fosters reductions in both R_{bb} and base-collector capacitance C_{cb} by enabling the formation of narrow mesas with symmetric, two-sided base contacts of width $\sim L_T$, the transfer length for carriers in the base.

Simultaneous $f_{\tau} = 530$ GHz and $f_{max} = 750$ GHz were measured at a bias of $I_c = 12.4$ mA, $V_{ce} = 1.5$ V. Currentgain cutoff frequency f_{τ} is slightly higher than previous devices with record f_{max} [2] due to the thinning of the drift collector from 100 nm to 70 nm. Narrowing the base mesa via e-beam lithography to reduce C_{cb} is largely responsible for increasing f_{max} 33% from previous $T_c = 70$ nm epitaxial designs with similar base thicknesses [3].

The emitter contact and mesa were formed through blanket refractory metal deposition and dry etch [4]. The emitter $n-In_{0.53}Ga_{0.47}As$ cap doping has been increased from ~ 6.0 to 8.0×10^{19} cm⁻³. The base epitaxial layer has been thinned from 30 nm to 25 nm, with a $1.0-0.5 \times 10^{20}$ cm⁻³ doping grade. The drift collector has been thinned from 100 nm to 70 nm, including a 9.5 nm InGaAs setback region and 12 nm InGaAs/InAlAs chirped superlattice grade. The base contact and base mesa were defined through e-beam lithography, with a lifted-off base contact. Collector and backend formation were formed through liftoff, wet etch, and BCB planarization [4].

DC measurements and biasing were performed with an Agilent 4155 Parameter Analyzer, and 1-67 GHz Sparameter measurements were done with an Agilent E8361A PNA. From DC data, common-emitter current gain β = 14, common-emitter breakdown voltage $V_{bceo} = 2.44$ V and collector contact resistivity and sheet resistance were $\rho_c = 12 \ \Omega \cdot \mu m^2$ and $R_{sh} = 14 \ \Omega/\Box$. Emitter contact resistivity $\rho_{ex} = 2 \ \Omega \cdot \mu m^2$, the lowest reported n-contact resistivity in a real InP HBT to date. $R_{bb} = 40 \ \Omega$, and $C_{cb} = 3.0$ fF were extracted from RF measurements. Peak RF performance of simultaneous $f_c/f_{max} = 530$ GHz / 750 GHz was obtained at a bias of $I_c = 12.4$ mA ($J_e = 27.6$ mA/ μm^2), $V_{ce} = 1.5$ V ($V_{cb} = 0.54$ V), and total power density > 40 mW/ μm^2 . Good fit was obtained between measured S-parameters and simulated S-parameters based on a hybrid- π equivalent circuit model.

This work was supported by the DARPA CMO Contract No. HR0011-09-C-0060. Portions of this work were done in the UCSB nanofabrication facility, part of the NSF-funded NNIN network, and the MRL, supported by the MRSEC Program of the NSF under award No. MR05-20415.

- M. Rodwell, M. Le, B. Brar, "InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies," *Proc. of the IEEE*, vol. 96, no. 2, pp. 271-286, Feb 2008.
- [2] M. Urteaga, et al., "130nm InP DHBTs with ft > 0.52 THz and fmax > 1.1 THz," 69th Device Research Conference, 20-22 June 2011, SantaBarbara, CA.
- [3] E. Lind, et al., "560 GHz ft, fmax InGaAs/InP DHBT in a novel dry-etched emitter process," 65th Device Research Conference, 18-20 June 2007, South Bend, IN.
- [4] V. Jain, et al., "InGaAs/InP DHBTs demonstrating simultaneous ft/fmax ~ 460/850 GHz in a refractory emitter process," IEEE Int. Conf. on Indium Phosphide and Related Materials, 22-26 May 2011, Berlin, Germany.

*Corresponding author: evan.lobisser@agilent.com, Phone: +1 (707) 577-5629, Fax: +1 (707) 577-2560

Fig. 2: Common-emitter I-V curves normalized to emitter junction area, with breakdown and peak bias.

	T (Å)	Material	Doning (cm ⁻³)	Description
	100	In _{0 53} Ga 0.47As	8 × 10 ¹⁹ : Si	Emitter cap
	150	InP	5 × 10 ¹⁹ : Si	Emitter
	150	InP	2 × 10 ¹⁸ : Si	Emitter
	250	InGaAs	1-0.5 × 10 ²⁰ : C	Base
	95	In _{0.53} Ga 0.47As	1 × 10 ¹⁷ : Si	Setback
5	120	InGaAs / InAlAs	1 × 10 ¹⁷ : Si	B-C Grade
	30	InP	5 × 10 ¹⁸ : Si	Pulse doping
	455	InP	1 × 10 ¹⁷ : Si	Collector
	75	InP	1 × 10 ¹⁹ : Si	Sub-collector
	50	In0.53Ga 0.47As	4 × 10 ¹⁹ : Si	Sub-collector
	3000	InP	1 × 10 ¹⁹ : Si	Sub-collector
	35	In _{0.53} Ga 0.47As	Undoped	Etch stop
	Substrate	SI InP		

Fig. 3: f_{τ}, f_{max} , and C_{cb} variation Fig. 4: Gummel plot and DC current gain with z_{e} and V_{cb} Fig. 5: Epitaxial design

S₂₁/10 10*S₁₂ (a) Simulated Measured C_{cb,ex} = 2.17 fF $R_{cb} = 14 k\Omega$ $R_{bb} = 40 \ \Omega$ R_{cc} = 5.7 Ω **(b)** $C_{cb,i} = 0.83 \, \text{fF}$ Base Col R_{be} = 56 Ω (0.2 S)V_{be}exp -jw(0.23 ps) C_{je} + C_{diff} = 2.9 + 45.1 fF R_{ex} = 4.4 Ω Emitter

Fig. 7: (a) TEM cross-section and (b) top-down SEM of emitter and base mesa

