International Symposium on Compound Semiconductors 2012

InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C_{cb} and Increased RF Cut-off Frequency

Evan Lobisser^{1,*}, Johann C. Rode, Vibhor Jain², Han-Wei Chiang, Ashish Baraskar³, William J. Mitchell, Brian J. Thibeault, Mark J. W. Rodwell Dept. of ECE, University of California, Santa Barbara, CA 93106, USA (Now with ¹Agilent Technologies, Inc., CA, ²IBM Corporation, VT, ³GlobalFoundries, NY)

Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA 91360

Dmitri Loubychev, Andrew Snyder, Ying Wu, Joel M. Fastenau, Amy W. K. Liu IQE Inc., Bethlehem, PA 18015

*evan.lobisser@agilent.com, +1 (707) 577-5629

Outline

- Motivation
- HBT Design & Scaling
- Fabrication Process & Challenge
- Electrical Measurements
- Conclusion

Why THz Transistors?

High gain at microwave frequencies: Precision analog design, high resolution ADCs, DACs

Type-I InP DHBTs at UCSB

To double bandwidth of a mesa DHBT:

Keep *constant* all *resistances* and *currents Reduce 2:1* all *capacitances* and *transport delays*

 $(\text{emitter length} L_{e})$

Parameter	Change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.41:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter contact resistivity	decrease 4:1
base contact resistivity	decrease 4:1
current density	increase 4:1

Lateral scaling

Surface prep & doping

Keep lengths the same, reduce widths 4:1 for thermal considerations

Epitaxial Design

T(nm)	Material	Doping (cm ⁻³)	Description	
10	In _{0.53} Ga _{0.47} As	8⋅10 ¹⁹ : Si	Emitter cap	
15	InP	5∙10 ¹⁹ : Si	Emitter	r 0.5 0 -0.5 $\underbrace{\bigcirc}_{0}$ -1 \bigcirc 1.5
15	InP	2⋅10 ¹⁸ : Si	Emitter	
25	InGaAs	1-0.5·10 ²⁰ : C	Base	
9.5	In _{0.53} Ga _{0.47} As	1⋅10 ¹⁷ : Si	Setback	
12	InGaAs / InAlAs	1.10 ¹⁷ : Si	B-C Grade	ш́-2.5 -
3	InP	5 ·10 ¹⁸ : Si	Pulse doping	-3 -
45.5	InP	1.10 ¹⁷ : Si	Collector	-3.5
7.5	InP	1·10 ¹⁹ : Si	Sub Collector	0 50 100 15 Distance (nm)
5	In _{0.53} Ga _{0.47} As	4⋅10 ¹⁹ : Si	Sub Collector	Distance (IIII)
300	InP	1·10 ¹⁹ : Si	Sub Collector	$V = 1.0V/V = 0.5V/I = 0.27 m \Lambda/m^2$
3.5	In _{0.53} Ga _{0.47} As	Undoped	Etch stop	$v_{be} = 1.0v, v_{cb} = 0.5v, J_e = 0, 27 \text{ IIIA/}\mu\text{III}^-$
Substrate	SI : InP			

Thin (70 nm) collector for balanced f_r/f_{max} High emitter/base doping for low R_{ex}/R_{bb}

Sub-200 nm Emitter Anatomy

100 nm

SiN_x

Hybrid sputtered metal stack for low-stress, vertical profile

W/TiW interfacial discentinuity enables base contact lift-off High-stress emitters fall off

Very thin emitter epitaxial layer

Interfacial Mo blanket-evaporated for low ρ_c undercuts emitter contact

SiNx sidewalls pretect emitter contact prevent ersitter basetshed metal has

non-vertical etch profile

Lithographic Scaling and Alignment

E-beam lithography needed to define < 150 nm emitters and for < 50 nm emitter-base contact misalignment

RF measurements conducted using Agilent E8361A PNA from 1-67 GHz

DC bias and measurements made with Agilent 4155 SPA

Off-wafer LRRM calibration, **lumped-element pad stripping** used to de-embed device S-Parameters

Isolated pad structures used to provide clean RF measurements

DC Data

$$\begin{split} \beta &= \textbf{14} \text{ for 150 nm junction} \\ VB_{ceo} &= \textbf{2.44 V} @ J_e = 15 \text{ kA/cm}^2 \\ R_{ex} &\approx \textbf{2} \ \Omega \cdot \mu \textbf{m}^2 \text{ (RF extraction)} \\ \end{split}$$
Collector $\rho_{sheet} &= \textbf{14} \ \Omega /_{\Box}, \ \rho_c = \textbf{12} \ \Omega \cdot \mu \textbf{m}^2 \end{split}$

RF Data

Peak *RF performance at >40 mW/µm*²

Kirk limit not reached

Equivalent Circuit Model

Lowest ρ_{ex} to date due to Mo contact, highly doped epi C_{cb} lower than 100 nm collector epi designs due to E-beam litho

Performance Analysis

 τ_{ec} dominated by *transit delays*, high *ideality factor reduces* $f_{\tau} \sim 10\%$

Expected base $\rho_c = 4 \ \Omega \cdot \mu m^2$ and $R_{sh} = 800 \ \Omega/\Box$ yields $f_{max} > 1.0 \ THz$ for same f_{τ}

Epitaxial design, *process damage* explain high η_b , R_{bb}

 R_{sh} increased by **base contacts reacting** with 5 nm (20 %) of base

2.5 nm of Pt diffuses ~ 8 nm

R

Conclusion

E-beam lithography used to define narrow emitter, *narrowest base mesa* reported to date

- Narrow mesa, low emitter ρ_c enable 33% increase in f_{max} from previous UCSB results with 70 nm collector thickness
- Epitaxial thinning increased f_{τ} by 10% from 100 nm UCSB designs
- 1 THz bandwidth possible with improved base contact process

This work was supported by the DARPA CMO Contract No. HR0011-09-C-0060.

Portions of this work were done in the UCSB nanofabrication facility, part of the NSF-funded NNIN network, and the MRL, supported by the MRSEC Program of the NSF under award No. MR05-20415.

Questions?

Extra Slides

Bipolar Scaling Laws

(emitter length L_e)

Fabrication: Emitter contact

SiN_x PECVD deposition CF_4/O_2 ICP etch

InGaAs wet etch

2nd SiN_x sidewall InP wet etch

Base Post Cap

$$C_{cb,post} = \frac{\mathcal{E}_0 \mathcal{E}_r \cdot A_{post}}{T_c}$$

 $C_{cb,post}$ does not scale with L_e → Adversely effects f_{max} as $L_e \downarrow$ → Need to minimize the $C_{cb,post}$ value

Transit time Modulation Causes C_{cb} Modulation

