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Conclusion
•	 Inclusion of Te as a co–dopant with Si lowers contact and 
sheet resistance for both In0.53Ga0.47As and InAs

•	 Te likely improves contact and sheet resistance by improving 
material quality as seen in improved Hall mobility and sharp-
ened x–ray peaks

•	 Te is an effective n–type dopant of In0.53Ga0.47As up to 2.6×1019 
cm-3

Transmission Line Measurement

Si doped
InAs

Si & Te 
co–doped

InAs

Si doped
In0.53Ga0.47As

Si & Te 
co–doped

In0.53Ga0.47As
RSH (Ω) 25.3 18.9 31.0 24

RC (Ω–μm) 9.9 6.6 8.5 6.8
ρ (Ω–μm2) 3.9 2.3 2.3 1.9

X–Ray Diffraction
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Hall Measurement

Si doped
In0.53Ga0.47As

Te doped
In0.53Ga0.47As

Si & Te co–doped
In0.53Ga0.47As

RSH (Ω) 3.65 3.62 2.95
μ (cm2/V·s) 780 1601 1111

nd (cm3) 4.39·1019 2.16·1019 3.81·1019

Results

(a) (b)

•	 Hall measurement showed exponential dependence of ac-
tive electron concentration on GaTe cell temperatures from           
475 ºC (2.1·1017 cm-3) to 625 ºC (2.6·1019 cm-3)

•	 No saturation effects evident in log plot of GaTe cell tem-
perature versus active electron concentration

•	 Futher experiments under way to determine satruated elec-
tron concentration at higher GaTe cell temperatures

•	 Si cell temperature of 1392 °C, Te cell temperature of 625 °C
•	 Lowest sheet resistance from Si and Te co–doped In0.53Ga0.47As
•	 Incorporation of Te with Si lowers overall active carrier con-
centration but increases mobility when compared to Si only

•	 Improved material quality by incorporating Te
•	 Te could act as a surfactant5 helping to improve material qual-
ity of heavily Si doped In0.53Ga0.47As

(a) (d)

(b) (e)

(c) (f)

•	 AFM images show a reduction in the number of surface de-
fects from 1.10×107 to 4.75×106 cm-2 for the Si and Si + Te 
doped In0.53Ga0.47As regrown sample

•	 Areas without cat–eye defects in the co–doped sample have 
lower density of mico dots, as seen in Figures 2 (c) and (e)

•	 The surface morphology of the co–doped sample is superior 
to that of the Si doped sample

Figure 6: Resistance versus gap spacing for (a) In0.53Ga0.47As TLM and (b) 
InAs TLM structures.

Figure 5: (a) Rocking curve scans of Te doped (olive), Si 
doped (blue), and Si and Te co–doped In0.53Ga0.47As.

•	 XRD shows more narrow substrate peak and more narrow 
shoulder peak for Si and Te co–doped In0.53Ga0.47As than for 
Si doped In0.53Ga0.47As

•	 Te doped In0.53Ga0.47As shows large (> 1% alloy concentra-
tion) lattice mismatch yielding no conclusions

(a) (b)

•	 Inclusion of Te lowers sheet resistance for both In0.53Ga0.47As 
and InAs

•	 Inclusion of Te lowers contact resistance for both In0.53Ga0.47As 
and InAs

TLM Samples

Hall Samples

Experiment

(a) (b) (c)

Figure 1: Illustration of Hall sample structures used to measure sheet re-
sistance, carrier concentration, and mobility of (a) Si doped, (b) Te doped, 
and (c) Si & Te co–doped In0.53Ga0.47As.

(a) (b)

Figure 2: Illustration of TLM sample structures used to measure sheet re-
sistance and contact resistance of (a) In0.53Ga0.47As, and mobility of (a) Si 
doped, (b) Te doped, and (c) Si & Te co–doped In0.53Ga0.47As.

•	 Samples were growth by solid source MBE lattice matched 
to (100) semi-insulating InP

•	 TLM Samples:
−− Figure 2 (a): 60 nm n+ In0.53Ga0.47As Si doped or Si + Te 
co–doped; 7 nm In0.53Ga0.47As, 3 nm In0.52Al0.48As Si doped 
1.3·1019 cm-3; 400 nm In0.52Al0.48As; S. I . InP substrate
−− Figure 2 (b): 60 nm n+ InAs Si doped or Si + Te co–
doped; 10 nm In0.53Ga0.47As, 3 nm In0.52Al0.48As Si doped    
1.3·1019 cm-3; 400 nm In0.52Al0.48As; S. I . InP substrate
−− Top 60 nm of n+ material was regrown via a quasi–migra-
tion–enchance–epitaxy technique (MEE)6 on air exposed 
samples.

•	 Sample cleaning prior to regrowth
−− UV Ozone and 10 H2O: 1 HCl dipv
−− Hydrogen cleaning (1.0·10-6 Torr partial pressure) at 	
420 °C for 40 minutes

•	 TLM samples were mesa isolation and Ti/Pd/Au metalized, 
Figure 2 (a) and (b)

•	 Samples were growth by solid source MBE lattice matched 
to (100) semi-insulating InP

•	 Hall Samples:
−− 500 nm n+ In0.53Ga0.47As Si doped (Figure 1 (a)), Te doped 
(Figure 1 (b)), and Si and Te co–doped (Figure 1 (c)); 150 
nm In0.52Al0.48As; S. I. InP substrate
−− Top 500 nm grown at 400 °C

•	 Indium dots were manually places on the sample surface
•	 Hall measurement by Van der Pauw technique 

Figure 3: (a) Arrhenius plot of inverse GaTe cell temperature (abscissa) 
versus active carrier concentration (ordinate) and (b) GaTe cell tempera-
ture versus active carrier concentration with exponential fit (linear on log 
scale) of Te doped In0.53Ga0.47As.

Table 1: Summary of Hall measurements taken on Si doped, 
Te doped, and Si and Te co–doped In0.53Ga0.47As.

Figure 4: AFM images of Si doped In0.53Ga0.47As regrowth (a)–(c) and of 
Te doped In0.53Ga0.47As regrowth (d)–(f). (a) and (d) are 20×20 µm2, (b) 
and (e) are 5×5 µm2, and (c) and (f) are 2×2 µm2.

Table 2: Summary of contact resistance data extracted from 
Figure 6 (a) and (b).

•	 III-V transistors are being developed for use in large scale in-
tegrated circuits1

•	 Scaling requirements dictate that as device areas scale by 1:2, 
absolute resistance must remain constant, requiring a 1:2 de-
crease in resistivities

•	 ~ 9 nm Lg MOSFETs would need access resistivities of less 
than 10 W mm to suffer a 10 % degredation in perfomance2

•	 HBTs and optoelectronic devices also require lower parasitic 
resistivities in order to operate at increasing frequency3

•	 MBE can be used to make low-resistance, highly doped ohm-
ic contact to InGaAs4

•	 We show that we can dope In0.53Ga0.47As with Te from 2·1017 
to 2.6·1019 cm-3

•	 We show that in incorporation of Te as a co–dopant lowers 
semiconductor sheet resistance and metal–semiconductor 
contact resistance in regrown In0.53Ga0.47As and InAs

•	 Te likely acts as a surfactant5 which improves material quality
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