

Lower Limits To Specific Contact Resistivity

Ashish Baraskar¹, Arthur C. Gossard^{2,3}, Mark J. W. Rodwell³

¹GLOBALFOUNDRIES, Yorktown Heights, NY

Depts. of ²Materials and ³ECE, University of California, Santa Barbara, CA

24th International Conference on Indium Phosphide and Related Materials Santa Barbara, CA

Ohmic Contacts: Critical for nm & THz Devices

Scaling laws to double bandwidth

Intel 32 nm HKMG IEDM 2009

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

THz HBT: Lobisser ISCS 2012

HBT parameter change	
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

Ohmic Contacts: Critical for nm & THz Devices

Scaling laws to double bandwidth

Intel 32 nm HKMG IEDM 2009

THz HBT: Lobisser ISCS 2012

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1
> 2 Ω -um ² resistivity for 2 THz f _{max}	

IOI

MUSFEI

resistivity

-um

Ultra Low-Resistivity Refractory Contacts

Schottky Barrier is about one lattice constant what is setting contact resistivity ? what resistivity should we expect ?

Landauer (State-Density Limited) Contact Resistivity

momentum	$k_f \propto m^{1/2} E_f^{1/2}$	
velocity	$v_f \propto k_f / m \propto E_f^{1/2} / m^{1/2}$	
density	$n \propto k_f^3 \propto m^{3/2} E_f^{3/2}$	$\Delta k = \pi / \underline{I}$
current	$J \propto m^1 E_f^2$	$\uparrow k_{y}$
conductivity	$\frac{\partial J}{\partial E_f} \propto m^1 E_f^1 \propto m^0 n^{2/3}$	

k

Landauer (State-Density Limited) Contact Resistivity

velocity
density
current

momentum	$k_{_f} \propto m^{_{1/2}} E_{_f}^{_{1/2}}$
velocity	$v_f \propto k_f / m \propto E_f^{1/2} / m^{1/2}$
density	$n \propto k_f^3 \propto m^{3/2} E_f^{3/2}$
current	$J \propto m^1 E_f^2$
conductivity	$\frac{\partial J}{\partial E_f} \propto m^1 E_f^1 \propto m^0 n^{2/3}$
Γ valley	$\sigma_c = \left(\frac{q^2}{\hbar}\right) \cdot \left(\frac{3}{8\pi}\right)^{2/3} \cdot n^{2/3}$
L, X, ∆ valleys	$\sigma_{c} = \left(\frac{q^{2}}{\hbar}\right) \left(\frac{3}{8\pi}\right)^{2/3} \cdot \sum_{\text{valley}} \left(\frac{m_{x}m_{y}}{m_{z}^{2}}\right)^{1/6} \cdot n_{\text{valley}}^{2/3}$

About this work

Scope

 Analytical calculation of minimum feasible contact resistivities to n-type and p-type InAs and In_{0.53}Ga_{0.47}As.

Assumptions

- Conservation of transverse momentum and total energy across the interface
- Metal *E*-*k* relationship treated as a single parabolic band
- Band gap narrowing due to heavy doping neglected for the semiconductor

Potential Energy Profile

Schottky barrier modified by image forces

- Modeled potential barrier: piecewise linear approximation
- $\delta \! q \phi_{\rm \scriptscriptstyle Bn}$ introduced to facilitate use of Airy functions for calculating transmission probability

 $\delta q \phi_{Bn}$

 $q \phi_{B_{B}}$

Calculation of Contact Resistivity

Current density, J

$$J = \frac{2q}{(2\pi)^3} \int_{k_{sx} = -\infty}^{k_{sy} = -\infty} \int_{k_{sy} = -\infty}^{k_{sy} = -\infty} \int_{k_{sz} = 0}^{\infty} v_{sz} \cdot (f_s - f_m) \cdot T \cdot dk_{sx} dk_{sy} dk_{sz}$$

z: transport direction

 k_{sx} , k_{sy} , k_{sz} : wave vectors in the semiconductor

- v_{sz} : electron group velocity in z direction
- *T* : interface transmission probability

 f_s and f_m : Fermi functions in the semiconductor and the metal

Contact Resistivity,
$$\rho_c = \frac{1}{\rho_c} = \frac{dJ}{dV}$$

Results: Zero Barrier Contacts, Landauer Contacts

 $E_{fm} \xrightarrow{E_{fs}} E_{fs}$ $E_{fs} \xrightarrow{E_{fs}} E_{cs}$ $E_{cs} \xrightarrow{Q \phi_R} = 0$

Step potential energy profile

Step Potential Barrier:

interface quantum reflectivity, resistivity >Landauer Parabolic vs. non-parabolic bands:

differing E_{fs} - $E_{cs} \rightarrow$ differing interface reflectivity Landauer resistivity lower in Si than in Γ -valley semiconductorfs multiple minima, anisotropic bands

Results: InGaAs

Assumes parabolic bands

At n = 5×10^{19} cm⁻³ doping, Φ_B =0.2 eV measured resistivity 2.3:1 higher than theory

Theory is 3.9:1 higher than Landauer

References:

- 1. Jain et. al., IPRM, 2009
- 2. Baraskar et al., JVST B, 2009
- 3. Yeh et al., JJAP, 1996
- 4. Stareev et al., JAP, 1993

Results: N-InAs

Assumes parabolic bands

At n = 10^{20} cm⁻³ doping, Φ_B =0.0 eV measured resistivity 1.9:1 higher than theory

Theory is 3.6:1 higher than Landauer

References:

- 1. Baraskar et al., IPRM, 2010
- 2. Stareev *et al.*, JAP, 1993
- 3. Shiraishi et al., JAP, 1994
- 4. Singisetti *et al.*, APL, 2008
- 5. Lee et al., SSE, 1998

Results: P-InGaAs

Assumes parabolic bands

Theory and experiment agree well.

At n = 2.2×10^{20} cm⁻³ doping, Φ_B =0.6 eV theory is 13:1 higher than Landauer

 \rightarrow Tunneling probability remains low.

References:

- 1. Chor *et al.*, JAP, 2000
- 2. Baraskar *et al.*, ICMBE, 2010
- 3. Stareev et al., JAP, 1993
- 4. Katz et al., APL, 1993
- 5. Jain et al., DRC, 2010
- 6. Jian et al., Matl. Eng., 1996

Conclusions

Correlation of experimental Contact resistivities with theory excellent for P-InGaAs ~4:1 discrepancy for N-InGaAs, N-InAs

N-contacts are approaching Landauer Limits theory vs. Landauer: 4:1 discrepancy tunneling probability is high

Transmission Probability, T

Potential energy in various regions $V_1(z) = 0,$ $z \leq 0$ $V_2(z) = \phi_m - d\phi_{Bn} + s_1 z,$ $0 \le z \le d_1$ $V_{3}(z) = \phi_{m} + \frac{\phi_{m} - \phi_{R}}{d_{2} - d_{1}}d_{1} - s_{2}z, \qquad d_{1} \le z \le d_{2}$ $\phi_m = \phi_R + \phi_{Bn} + \phi_S$ $\phi_{s} = E_{fs} - E_{cs}$ $s_1 = d\phi_{Bn} / d_1$ $s_2 = \frac{\phi_m - \phi_R}{d_2 - d_1}$

Transmission Probability, T

Solutions of Schrodinger equation in various regions

$$\frac{\hbar^2}{2m_s}\frac{d^2\psi}{dz^2} + (E_z - V(z))\psi = 0$$

 $\psi_{1}(z) = \exp(ik_{mz}z) + R\exp(-ik_{mz}z), \qquad z \le 0$ $\psi_{2}(z) = C \cdot Ai[\rho_{1}(qV_{1}(z) - E_{z})] + D \cdot Bi[\rho_{1}(qV_{1}(z) - E_{z})], \quad 0 \le z \le d_{1}$ $\psi_{3}(z) = F \cdot Ai[\rho_{2}(qV_{2}(z) - E_{z})] + G \cdot Bi[\rho_{2}(qV_{2}(z) - E_{z})], \quad d_{1} \le z \le d_{2}$ $\psi_{4}(z) = t\exp(ik_{mz}z), \qquad z \ge d_{2}$

Ai(z) and Bi(z) are the Airy functions $\rho_1 = (\frac{2m_s}{\hbar^2 s_1^2})^{1/3}$ $\rho_2 = (\frac{2m_s}{\hbar^2 s_2^2})^{1/3}$

Transmission probability is given by

$$T = \frac{k_{sz}}{k_{mz}} \frac{m_m}{m_s} \left| t \right|^2$$

