High-Speed Track-and-Hold Circuit Design

Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)

October 17th, 2012

Outline

- 250 nm InP HBT technology review
- Applications and Motivation
- Key design features and contributions
- Review of circuit design and layout
- Measurement results and comparison

TSC 250nm InP HBT Process

Wideband Sample & Hold Applications

 Sub-sampling applications: automated test equipment (ATE), oscilloscope, jitter measurement ...

Sampling Clock

Undersampling applications: undersampling receivers

Direct conversion receiver:

Problems such as DC offset, noise, distortion, I/Q mismatch, etc

Undersampling receiver:

- T/H replaces downconversion mixer
- Elimintaes IF filter, IF gain stages, mixer and high frequency LO
- DC offset, IQ mismatch problem goes away
- Noise folding is a problem

Slide courtesy

MJC Teledyne

Motivation: Sample & Hold vs Track & Hold

High Frequency Sampling Techniques

- O stability issues
- ☺ Flat AC response

[1] J. C. Jensen and L. E. Larson, "A broadband 10-GHz track-and-hold in Si/SiGe HBT technology," IEEE JSSC, Mar. 2001.

[2] S. Shahramian, A. C. Carusone and S. P. Voinigescu, "Design Methodology for a 40-GSamples/s Track and Hold Amplifier in 0.18-µm SiGe BiCMOS Technology," IEEE JSSC, Oct. 2006.

Key Design Features

Track & hold switch: base-collector diode lower R_{on}, lower C_{off} than HBT e-b junction minority carrier storage time approximately equal to base transit time

Common reports in the literature: switch voltage swings set very small and fast, but high IP3 only for $f_{signal} << f_{Nyquist}$

Real-world design requires:

switch voltages set for high IP3 with Nyquist-frequency input

Linearization of input buffer for high IP3 cubic feedforward path cancels IM3 from differential pair

Input Buffer & TH Switch

Input Buffer & TH Switch

Nonlinearity Derivation - I

Nonlinearity Derivation-II

$$\begin{cases} \delta i_{c1} = \frac{1/g_{m_1}}{R_{EE_1} + 1/g_{m_1}} \delta v_i, \\ \delta i_{c3} = \frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \delta v_i, \\ \delta i_{o} = \frac{-1}{Z_L + r_{ex_2} + 1/g_{m_2}} \left[\frac{r_{ex_2} + 1/g_{m_2}}{R_{EE_1} + 1/g_{m_1}} + \frac{R_L}{R_{EE_3} + 1/g_{m_3}} \right] \delta v_i, \\ \delta i_{c2} = \delta i_{c1} + \delta i_{o}. \\ \delta v_{be_1} = \left(\frac{V_T}{I_{DC_1}} \right) \delta i_{C1} - \left(\frac{V_T}{2I_{DC_2}^2} \right) \delta i_{C2}^2 + \left(\frac{V_T}{3I_{DC_3}^3} \right) \delta i_{C3}^3 \\ \delta v_{be_3} = \left(\frac{V_T}{I_{DC_3}} \right) \delta i_{C3} - \left(\frac{V_T}{2I_{DC_3}^2} \right) \delta i_{C3}^2 + \left(\frac{V_T}{3I_{DC_3}^3} \right) \delta i_{C3}^3 \\ \delta v_{be_2} = \left(\frac{V_T}{3I_{DC_2}^3} \right) \delta i_{C3} - \left(\frac{V_T}{2I_{DC_3}^2} \right) \delta i_{C3}^2 + \left(\frac{V_T}{3I_{DC_3}^3} \right) \delta i_{C3}^3 \\ \delta v_{be_3} = \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_1}}{R_{EE_1} + 1/g_{m_1}} - \frac{1}{Z_L + r_{ex_2} + 1/g_{m_2}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_1}}{R_{EE_1} + 1/g_{m_1}} - \frac{1}{Z_L + r_{ex_2} + 1/g_{m_2}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{1/g_{m_3}}{R_{EE_3} + 1/g_{m_3}} \right) \delta v_i^3 \\ \delta v_{be_3} \oplus \left(\frac{V_T}{3I_{DC_3}^3} \right) \left(\frac{V_T}{3I_{DC$$

Nonlinearity Derivation - III

Output Buffer & Output Driver

Output Buffer & Output Driver

- Output buffer should always be <u>on</u> in Sample & Hold circuit
- Output stage needs to be designed linear enough not to affect total nonlinearity of the circuit

Layout (Signal path)

S-parameters measurement

Clock Distribution Circuit

Clock Distribution Circuit

Clock Distribution Circuit - layout

Transient and Linearity Measurements

THD and Beat test Measurements

Comparison with the State of the Art Works

	Sample Rate (GS/s)	BW (GHz)	Input Range Output Range	$egin{array}{llllllllllllllllllllllllllllllllllll$	Power (mW)	${f V_{ m Supply}}\ {f (V)}$	$\begin{array}{c} \text{Die-Size} \\ \left(\text{mm}^2 \right) \end{array}$	$\frac{Process}{f_t}$
[1]	30	7	$-12\mathrm{dBm} \\ < 150\mathrm{mV_{pp}}$	$1@5/30 \\ 0@9/30$	270	1.8	1.0	CMOS
[2]	40	43	$<-8\mathrm{dBm}\\500\mathrm{mV_{pp}}$	$8@6/40\\0@19/40$	540	3.6	1.0×1.1	SiGe HBT 160 GHz
[3]	50	42	0 dBm N.A.	21@30/50	640	4, 3.3	1.28×1.15	SiGe BiCMOS
[4]	20	20	$\begin{array}{l} 500\mathrm{mV_{pp}}\\ 500\mathrm{mV_{pp}} \end{array}$	16@2/20	1990	-6	1.6×1.4	InP HBT 210 GHz
[5]	40	16	$\begin{array}{l} 1000\mathrm{mV_{pp}} \\ < 100\mathrm{mV_{pp}} \end{array}$	15.6@10/40	560	5.5	1.8 imes 1.0	SiGe HBT 200 GHz
[6]	40	27	7 dBm N.A.	N.A.	1900	-6	1.4×1.6	InP DHBT 210 GHz
This work	50	40	$\begin{array}{c} 9\mathrm{dBm} \\ 800\mathrm{mV_{pp}} \end{array}$	20.7@6/40 19.7@10/40 17.4@18/40 16.7@22/40	1200	-5, -2.5	0.875×1.075	InP HBT 400 GHz

REFERENCES

- S. Shahramian, S. P. Voinigescu and A. C. Carusone, "A 30-GS/sec Track and Hold Amplifier in 0.13-μm CMOS Technology," in *Proceeding* of IEEE Custom Integrated Circuits Conference (CICC), pp. 493-496, Sep. 2006.
- [2] S. Shahramian, A. C. Carusone and S. P. Voinigescu, "Design Methodology for a 40-GSamples/s Track and Hold Amplifier in 0.18-μm SiGe BiCMOS Technology," *IEEE Journal of Solid State Circuits*, vol. 41, No. 10, pp. 2233-2240, Oct. 2006.
- [3] J. Lee, Y. Baeyens, J. Weiner and Y. K. Chen, "A 50GS/s Distributed T/H Amplifier in 0.18µm SiGe BiCMOS," in Proceeding of IEEE International Solid-State Circuits Conference (ISSCC), pp. 466-616, Feb. 2007.
- [4] Y. Bouvier, A. Konczykowska, A. Ouslimani, F. Jorge, M. Riet and J. Godin, "A 20-GSamples/s Track-Hold Amplifier in InP DHBT technology," in *Proceeding of European Microwave Integrated Circuit Conference (EuMIC)*, pp. 1-4, Oct. 2007.
- [5] X. Li, W. M. L. Kuo and J. D. Cressler, "A 40 GS/s SiGe track-and-hold amplifier," in *Proceeding of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)*, pp. 1-4, Oct. 2008.
- [6] Y. Bouvier, A. Ouslimani, A. Konczykowska and J. Godin, "A 40 Gsamples/s InP-DHBT Track-&-Hold Amplifier," in Proceeding of European Microwave Integrated Circuit Conference (EuMIC), pp. 61-64, Sep. 2010.

Questions?

T&H Chip layout

S&H Chip layout

Sample & Hold Transient waveforms

• 10 GHz RF input signal is being sampled by a 50 GHz clock

Differential

Single-ended

Sample & Hold Beat frequency test

Fin=20.5 GHz, Fclk=10 GHz

Experiment

Sample & Hold Linearity Measurements

Calculated ENOB using simulated noise figure of 20dB is more than 6bits.

Base-Collector Diode modeling - I

Base-Collector Diode modeling - II

