

Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain

¹<u>H.C. Park</u>, ¹M. Piels, ²E. Bloch, ¹M. Lu, ¹A. Sivanathan, ³Z. Griffith, ¹L. Johansson, ¹J. Bowers, ¹L. Coldren, and ¹M. Rodwell ¹University of California at Santa Barbara ²Technion, Israel Institute of Technology ³Teledyne Scientific & Imaging Company

> 23rd September, 2013 hcpark@ece.ucsb.edu

- Motivation
- New Proposed WDM Receivers
- Test Setups and Results
 - Two channel (SSB rejection) tests
 - Three channel (adjacent channel rejection) tests
- Conclusion

Motivation

- Network Traffics / High Data Rate Demands -
 - More bandwidth
 - Higher spectral efficiency
 - Low power consumption
 - System complexity and cost
 - Long reach

- High Speed Systems

- High Efficiency Systems

→ <u>Toward 1Tb/s using a Single Receiver (System)</u>

System Directions:

- Coherent (phase/amplitude) modulations (i.e. 16QAM)
- Dual polarizations
- Gridless channels
- Super-channels
- Photonic and electronic Integrations
- Low power / high efficiency

Conventional WDM Receivers

- Configuration: Photonic IC + Electrical IC
 - WDM multi-channels
 - De-multiplexing using AWG
 - Integrated LO lasers
 - 90° optical hybrids
 - Balanced photo-diodes (PDs) __
 - EIC: TIAs + filters + ADCs + DSPs

- Complex PIC
- Large die: expensive

- Many interfaces between PIC & EIC
- Fixed WDM channel spacing

Photonic IC

Proposed WDM Receivers

- Single-chip Multi-channel WDM Receivers: <u>Toward 1Tb/s</u>
 - Simple PIC: one LO + one optical hybrid + one set of PDs
 - Complex EIC
 - TIAs + filters + ADCs + DSPs
 - SSB mixers
 - Electrical LOs

– EIC

References: ¹⁾ >300GHz PDs – Ishibashi et. al. ²⁾ 1THz TRs – Jain Vibhor et. al.

Challenges: <u>high speed PDs¹</u> and <u>high speed EIC²</u>

- Complex EIC: **OK!!**
- Small and simple PIC
- One set of interface between PIC & EIC
- Flexible WDM channel spacing

Two-Stage Down-conversion: Optical, then Electrical

1) Optical LO for optical down conversion for all WDM channels

- → Optical WDM channels become subcarriers in the electrical domain
- 2) Electrical LO for selected channel with SSB mixers
 - → Selected channel down-converted to near DC
- 3) Other channels removed by filtering
 - \rightarrow Then, ADC + DSP
 - \rightarrow DATA recovery

System Demonstration using OMA+EIC (2-channels)

____ Real-time oscilloscope

OMA* as PICs Free space optics 90° optical hybrid & Balanced PDs

OMA* blocks

*OMA – optical modulation analyzer

Ref. Agilent N4391A Optical Modulation Analyzer Measure with confidence <u>http://cp.literature.agilent.com/litweb/pdf/5990-3509EN.pdf</u>

2-channel electrical IC

Two-channel Tests: Single-side-band Suppression

Two-channel Tests: Single-side-band Suppression

- About <u>25dB SSB suppression</u>
- Negligible channel interference
- \rightarrow x2 more channels within the PDs and EIC bandwidth

Three-channel Tests: Adjacent Channel Rejections

*Measured spectrums by an optical spectrum analyzer

Three-channel Tests: Adjacent Channel Rejections

• Eye Qualities with Different Filter Combinations

*Filter1: before optical modulators to suppress the side lobes *Filter2: after EIC outputs to filter out the other channels

Future Tests: 6-channel WDM Receivers

- Concept schematics (PIC + EIC)
- EIC for 6-channel receivers is ready to test !

Future Tests: 6-channel WDM Receivers

- 6-channel WDM receiver IC
 - Teledyne 500 nm InP HBT: ~300GHz f_{τ} , f_{max}
 - 1st design spin: no attempt to design for low power

- Simulations (5Gb/s BPSK)
 - 30Gb/s for BPSK, 60Gb/s for QPSK, 120Gb/s for 16QAM are feasible!

- <u>6-channel initial EIC only tests (done)</u>
- <u>6-channel system demonstrations will be done (soon)!</u>

Conclusion

- The first concept demonstration using two channel EIC receivers
- Spectral efficiency is maximized using a minimum channel spacing
- 5Gb/s using two channel receivers
- → Using 8-channels / 25GHz spacing / 100GHz EIC / 100GHz PDs / PDM
- → 0.8Tb/s for QPSK, 1.6Tb/s for 16QAM
- 5GHz spacing data recovery
- → Flexible channel (<10GHz) designs

Future Works

- 6-channel demonstration soon
- PIC + EIC demonstration soon
- Silicon based designs in near future
- → Low power consumption
- → <u>Small IC size</u>

Thanks for your attention! Questions?

hcpark@ece.ucsb.edu