Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic

Mark Rodwell, Doron Elias University of California, Santa Barbara

High Aspect Ratio Fins for Low-Power Logic

Fin thickness defined by Atomic layer epitaxy
→ nm thickness control
Fin height defined by sidewall growth
→ 200 nm high fins

Enables ~4 nm fin bodies \rightarrow 8 nm gate length 10:1 more current per unit die area \rightarrow smaller IC die area complements lithographic scaling Enables high speed, ultra low-power logic, V_{dd} ~300 mV

D. Elias, DRC 2013, June, Notre Dame

height>> pitch

Background: III-V MOS

V. Chobpattana et al (Stemmer group), APPLIED PHYSICS LETTERS 102, 022907 (2013)

FinFETs by Atomic Layer Epitaxy: Why ?

Electrostatics:

body must be thinner than $^{2}L_{g}/2$ \rightarrow less than 4 nm thick body for 8 nm L_{a}

<u>Problem</u>: threshold becomes sensitive to body thickness

 $\delta V_{th} \propto \delta T_{body} / T_{body}^3$

<u>Problem</u>: low mobility unless surfaces are very smooth

$$\mu \propto T_{body}^6 / \delta T_{body}^2$$

<u>Implication</u>: At sub-8-nm gate length, need : atomically-smooth interfaces atomically-precise control of channel thickness

side benefit: high drive current→ low-voltage, low-power logic

ALE-Defined finFET: Process Flow

Images

Goal: Tall Fins for High Drive Current

Goal: fin height >> fin pitch (spacing)→ more current per fin → less fins needed → higher integration density

Higher density \rightarrow shorter wires \rightarrow smaller $C_{wire} V_{dd} / I$, $C_{wire} V_{dd}^2 / 2$

Is the IC Area Reduction Significant ?

Clock/interconnect drivers need large drive currents. Area reduction for these is likely substantial.

FETs in Cache Memory & Registers are drawn at minimum widthNo area reduction for these.

Most, but not all, Logic Gates will be drawn at minimum width.

Benefit must be evaluated by VLSI architect, not by device physicist.

300 mV Logic: Can We Address The CV²/2 Limit ?

The CV²/2 dissipation limit

Subthreshold logic

Tunnel FETs

Bandgap of P+ source truncates thermal distribution.

Potential for low I_{off} at low V_{dd} . Obtaining high I_{on}/V_{dd} is the challenge.

Goal: Tall Fins for Low-Power, Low-Voltage Logic

Supply reduced from 500mV to 268 mV while maintaining high speed.

3.5:1 power savings ? Must consider FET capacitances.

Assumes (Hodges & Jackson, 2003): (1) Charge-control analysis (2) $I_{on,PFET}/W_g=0.5*I_{on,NFET}/W_g$ (3) FO=FI=1

Power and Delay Comparison

tall finFET, V_{dd}=268 mV

 $I_{on}=20 \ \mu\text{A}, I_{off}=2n\text{A}$ $C_{g-ch}=I_{on}L_g/v_{inj}V_{dd}=3.7 \text{ aF}$ $C_{gd-f}=C_{gs-f}=60 \text{ aF}$ $C_{wire}= 2 \text{ fF} (10 \ \mu\text{m length})$ $C_{total}= 2.9 \text{ fF} (various multipliers)$ delay= 39 ps $C_{total}V_{DD}^2= 0.11 \text{ fJ}$

Why tall finFETs ? Why Not Just Subthreshold Logic ?

Why tall finFETs ? Why Not Just Subthreshold Logic ?

tall finFET, V_{dd}=268 mV

Tunnel FETs & High-Aspect-Ratio Fins

Quick performance estimate:

Assume, for a moment, that P/N tunneling probability is 10%*. Typical of the best reported ohmic contacts .*

Then on-currents for tunnel FETs are ~10:1 smaller than that of normal FETs.

Unless I_{on}/W_g is high, tunnel FETs will suffer from either large C_{wire}V/I gate delays or (increasing FET widths) large die areas.

Using high-aspect ratio fin structures, tunnel FET drive currents can be increased. Parasitic fringing capacitance will then also contribute to CV/I & CV².

Contact to N-InGaAs @ 6E19/cm³ doping: m=0.1m₀, 0.2 eV, 0.5 nm barrier Baraskar, et al: Journal of Applied Physics, 114, 154516 (2013)

finFETs Defined by Atomic Layer Epitaxy

Fin thickness defined by Atomic layer epitaxy → nm thickness control Fin height defined by sidewall growth → 200 nm high fins

Benefits: Enables ~4 nm fin bodies \rightarrow 8 nm gate length 10:1 more current per unit die area \rightarrow smaller IC die area Enables high speed, ultra low-power logic, V_{dd} ~300 mV InGaAs finFET: 8 nm thick fin 200 nm high

D. Elias, DRC 2013, June, Notre Dame

height>> pitch

(end)

Backups

Lithographic Scaling vs. 3-D for High-Density Logic

Past VLSI Scaling: more FETs per IC because of (1) shorter gate & contact lengths

- (2) increased mA/micron \rightarrow less gate width W_a .
- Today, *I*_{on} / *W*_g (mA/micron) is not increasing soon, once S/D tunneling dominates, *I*_{on}/*W*_g will start to **decrease**
- Sub-16nm lithography is also difficult. Further reductions in feature size are expensive.

Clear: increased I_{on} for a given FET footprint size.

Clear: can suppress S/D tunneling: tunneling distance >> lithographic distance.

Less clear: decreased size of minimum-geometry FET.

 W_g

 L_g

1 mA

 $L_{S/d}$

Scaling in the S/D tunneling limit

At 4-8 nm Gate Lengths,

high leakage from source/drain tunneling

increases exponentially as gate length is reduced.

M. Luisier, ETH Zurich / Purdue

Reducing tunneling through increased mass can be counterproductive

increasing $m^* \rightarrow$ less tunneling, but lower FET on-current \rightarrow need more die area

Minimum gate length: source-drain tunneling (2)

increased $m^* \rightarrow$ decreased $I_{on}/W_{q} \rightarrow$ decreases packing density

Geometric Solutions to S/D Tunneling

Transport (& tunneling) distance larger than lithographic gate length.

Feature used NOW in our current planar FETs.

Can be incorporated in high-aspect-ratio finFETs

Why Not Release Fins Before S/D Regrowth ?

D. Elias, DRC 2013, June, Notre Dame

Images of released ~10 nm fins:

S/D regrowth provides mechanical support

Wire Lengths & Wire Capacitances in VLSI

Integrated Circuit Layout

more current per fin \rightarrow less fins needed \rightarrow higher integration density more current per fin \rightarrow shorter wires \rightarrow smaller $C_{wire}V_{dd}/I$, $C_{wire}V_{dd}^2/2$

FET Capacitances, Interconnect Capacitances

- fringing capacitance $C_{gd,f} = C_{gs,f} \approx 0.3 \,\text{fF}/\mu\text{m} \cdot W_g$
- $\frac{1}{T} \frac{\text{gate channel capacitance}}{C_{g-ch} \approx I_{\text{on}} L_g / v_{\text{injection}} V_{DD}}$
- $\stackrel{\text{interconnect capacitance}}{\uparrow} C_{wire} \approx 0.2 \, \text{fF}/\mu \text{m} \cdot L_{wire}$

Similar capacitances in finFET

Gate Capacitance, Energy, and Delay

fringing capacitance $C_{gd,f} = C_{gs,f} \approx 0.3 \,\text{fF}/\mu\text{m} \cdot W_g$

 $\frac{1}{T} \frac{\text{gate - channel capacitance}}{C_{g-ch} \approx I_{\text{on}} L_g / v_{\text{injection}} V_{DD}}$

 $\stackrel{\bullet}{\uparrow} \frac{\text{interconnect capacitance}}{C_{wire}} \approx 0.2 \text{ fF}/\mu \text{m} \cdot L_{wire}$

 $C_{total} \approx 0.2 \text{ fF}/\mu \text{m} \cdot L_{wire} \quad \text{interconnect} \\ + 15 \cdot 0.3 \text{ fF}/\mu \text{m} \cdot W_g \quad \text{fringing} \\ + 3 \cdot I_{\text{on}} L_g / v_{\text{injection}} V_{DD} \quad \text{gate - channel} \end{cases}$

Assumes: (1) Charge-control analysis* (2) $I_{on,PFET} / W_g = 0.5*I_{on,NFET} / W_g$ (3) FO=FI=1

$$\tau \approx C_{total} V_{DD} / 2I_{on} \quad \text{delay}$$
$$E_{sw} \approx C_{total} V_{DD}^2 / 2 \quad \text{energy}$$