High Transconductance Surface Channel In_{0.53}Ga_{0.47}As MOSFETs Using MBE Source-Drain Regrowth and Surface Digital Etching

Sanghoon Lee^{1*}, C.-Y. Huang¹, A. D. Carter¹, J. J. M. Law¹, D. C. Elias¹, V. Chobpattana², B. J. Thibeault¹, W. Mitchell¹, S. Stemmer², A. C. Gossard², and M. J. W. Rodwell¹

¹ECE and ²Materials Departments University of California, Santa Barbara, CA

2013 Conference on Indium Phosphide and Related Materials Kobe, Japan 05/22/2013

Outline

- Motivation: Why III-V MOSFETs?
- Key Design Considerations
 - Device Structure : Gate-last with S/D regrowth
 - Damage during regrowth : surface digital etching
- Process Flow
- Measurement Results
 - I-V Characteristics
 - TLM measurement
- Conclusion

more transconductance per gate width more current (at a fixed V_{dd}) \rightarrow IC speed or reduced V_{dd} (at a constant I_{on}) \rightarrow reduced power or reduced FET widths \rightarrow reduced IC size I_D/W_a \uparrow

increased transconductance from:

low mass \rightarrow high injection velocities lower density of states \rightarrow less scattering higher mobility in N+ regions \rightarrow lower access resistance

Other advantages

heterojunctions \rightarrow strong carrier confinement wide range of available materials epitaxial growth \rightarrow atomic layer control

Key Design Considerations

Device structure:

Scalability (sub 20 nm-L_g,<30 nm contact pitch) : self-aligned S/D, very low ρ_c^{2}

Carrier supply: heavily doped N+ source region³⁾ *Shallow junction:* regrown S/D³⁾ or Trench-gate

Channel Design:

Thinner wavefunction depth: Thin channel, less pulse doping. *More injection velocity:* high In-content channel⁴⁾

Gate Dielectric:

Thinner EOT : scaled high-k dielectric *Low D_{it} :* surface passivation⁵⁾, minimized process damage⁶⁾

> 1) M. Wistey et al. EMC 2009; 2) A. Baraskar et al. IPRM 2010 ; 3) U. Singisetti et at. EDL 2009 ; 4) S. Lee et al. EDL 2012 (accepted); 5) A. Carter et at. APEX 2011; 6) G. Burek, et al, JVST 2011.

> > **IPRM 2013**

Device Structure : Gate-Last process

Gate-First

Fully self-aligned transistor at nm dimensions

Process damage during gate metal deposition and definition

Large ungated region: High pulse doing → Large leakage current and increase in wavefunction depth

Gate-Last (substitutional-gate)

Low-damage process: Thermal gate metal, No plasma process after gate dielectric deposition

Rapid turn-around \rightarrow rapid learning.

A. Carter et at., DRC 2011

Evidence of Surface Damage During Regrowth

Long-channel FETs: consistently show >100 mV/dec. subthreshold swing Indicates high D_{it} despite good MOSCAP data. Suggests process damage.

Experiment: SiO₂ capping + high temp anneal + strip \rightarrow MOSCAP Process

Finding: large degradation in MOSCAP dispersion. Confirms process damage hypothesis.

Post-Regrowth Surface Digital Etching for Damage Removal

Surface removed by digital etch process
2' in BOE (dummy gate removal) ,
cycles: 15' UV ozone (surface oxidation)
1' dilute HCI (native oxide removal)
→ 13 - 15 Å/cycle, ~0.16 nm RMS roughness

- Etch significantly improves subthreshold swing and g_m
- Using this technique, we can easily thin the channel thickness.

Process Flow

I-V Characteristics for short and long channel devices

- 1.6 mS/ μ m at V_{ds}=0.5 V for a 65 nm-L_a device.
- 95 mV/dec SS for a 530 nm-L_q device.

Comparison with a control sample (short channel)

Control : without capping layer and surface digital etching, 75 nm-Lg

- ~75 % increase in peak transconductance at V_{ds} = 0.5 V

UCSB

- significantly better short channel characteristic with surface digital etching

Comparison with a control sample (long channel)

Control : without surface digital etching, 500 nm-Lg

- Similar on-state characteristics (~0.4 V Vt shift)

- Better short channel effect

TLM Measurement for S/D metal contact

- 0.15 ohm-µm² Contact resistivity and 25 ohm/sq. sheet resistance.

- 64 ohm-µm S/D access resistance (~5 % transconductance degradation)

Conclusion

- Using digital etching, damaged surface can be effectively removed in a nanometer precision without etch-stop.
- The removal of the damaged surface significantly improves both on- and off-state performance.
- g_m = 1.6 mS/µm at V_{ds}=0.5 V for a 65 nm-L_g device 95 mV/dec for a 530 nm-L_g device
- InAs regrown S/D provides very low contact resistivity of 0.15 ohm-µm².

Thanks for your attention! Questions?

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.

