THz Technologies: Transistors, ICs, Systems

Mark Rodwell, UCSB

rodwell@ece.ucsb.edu

Co-Authors and Collaborators: Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company

Teledyne IC Design Team: M. Seo, J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company

UCSB HBT Team: J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell Recent Graduates: V. Jain, E. Lobisser, A. Baraskar,

UCSB IC Design Team: S. Danesgar, T. Reed, H-C Park, Eli Bloch

DC to Daylight. Far-Infrared Electronics

100+ Gb/s wireless networks

Video-resolution radar \rightarrow fly & drive through fog & rain

near-Terabit optical fiber links

100-1000 GHz Wireless Has High Capacity

short wavelengths \rightarrow many parallel channels

Sheldon IMS 2009 Torkildson : IEEE Trans Wireless Comms. Dec. 2011.

#channels \propto (aperture area)²/(wavelength · distance)² ₃

100-1000 GHz Wireless Needs Phased Arrays

isotropic antenna \rightarrow weak signal \rightarrow short range

highly directional antenna \rightarrow strong signal, but must be aimed

$$\left(\frac{P_{received}}{P_{transmitted}}\right) \propto D_t D_r \left(\frac{\lambda^2}{R^2}\right) e^{-\alpha R}$$

no good for mobile

must be precisely aimed \rightarrow too expensive for telecom operators

beam steering arrays \rightarrow strong signal, steerable

32-element array \rightarrow 30 (45?) dB increased SNR

100-1000 GHz Wireless Needs Mesh Networks

100-1000 GHz Wireless Has Low Attenuation ?

Low attenuation on a sunny day

100-1000 GHz Wireless Has High Attenuation

50-500 GHz links must tolerate ~30 dB/km attenuation

Olsen, Rogers, Hodge, IEEE Trans Antennas & Propagation Mar 1978 Liebe, Manabe, Hufford, IEEE Trans Antennas and Propagation, Dec. 1989

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

350 meters range in five-9's rain

Realistic packaging loss, operating & design margins

PAs: 24 dBm P_{sat} (per element)→ GaN or InP LNAs: 4 dB noise figure → InP HEMT

PA backoff for OFDM

dB

7.00E+00

340 GHz, 160 Gb/s MIMO Backhaul Link

340 GHz, 160 Gb/s MIMO Backhaul Link

1° beamwidth; 8° beamsteering 600 meters range in five-9's rain Realistic packaging loss, operating & design margins PAs: 21 dBm P_{sat} (per element)→ InP LNAs: 7 dB noise figure → InP HEMT

400 GHz frequency-scanned imaging radar

What your eyes see-- in fog

What you see with X-band radar

What you would like to see

400 GHz frequency-scanned imaging car radar

400 GHz frequency-scanned imaging car radar

Range: see a basketball at 300 meters (10 seconds warning) in heavy fog (10 dB SNR, 28 dB/km, 1 foot diameter target, 65 MPH)

Image refresh rate: 60 Hz

Resolution 64×512=32,800 pixels

Angular resolution: 0.10 degrees

Angular field of view: 9 by 97 degrees

Aperture: 12" by 12"

Component requirements: 10 mW peak power/element, 3% pulse duty factor 6.5 dB noise figure, 5 dB package losses 5 dB manufacturing/aging margin

100-1000 GHz Wireless Transceiver Architecture

III-V LNAs, III-V PAs → power, efficiency, noise Si CMOS beamformer→ integration scale

...similar to today's cell phones.

RADAR / Imaging Needs Watts of Power, Low Noise Figure

...to reach such levels with a solid-state source:

As a function of range, weather, and data rate, effective sub-mm-wave technologies must low noise figure, high transmit power, and/or moderate to large phased arrays

0.1-1 THz Comms Links: No Monolithic Arrays

On-wafer antennas substantial die area, have high losses

For useful directivity, aperture areas are ~ 25 cm². → vastly too large for an IC

0.1-1 THz Comms Links: Discrete LNAs & PAs

Monolithic PAs & LNAs long lines to antennas many dB losses on transmit many dB losses on transmit degraded noise, degraded power

Discrete LNAs and PAs LNAs & PAs: adjacent to antennas losses no longer impair link

Given that we should not integrate the LNA and PA on the beamformer, it is to our benefit to use high-performance GaN & InP LNAs and PAs.

0.1-1 THz Comms Links: Array Design Concepts

Concepts: Robert York, UCSB

Effects of array size, Transmitter PAE, Receiver F_{min}

200 mW phase shifters in TRX & RCVR, 0.1 W LNAs

Large arrays:

more directivity, more complex ICs Small arrays:

less directivity, less complex ICs

\rightarrow Proper array size minimizes DC power

Low transmitter PAE & high receiver noise are p<u>artiall</u>y offset using arrays,

but DC power, system complexity still suffer

III-V PAs and LNAs in today's wireless systems...

Devices for 100-1000 GHz systems: F_{min} , P_{sat} , PAE

LNA noise figure, Power amplifier power & efficiency: All critically important in radio and radar

InP HBTs: strong THz MSI technology efficient, high-power PAs, up/down converters (VCOs, synthesizers, mixers)

InP HEMTs: best THz LNA technology 3 dB more noise → 2:1 more transmit power

GaN HEMTs vs. InP HBTs for power:

breakdown vs. gain \rightarrow power vs. PAE.

CMOS VLSI:

high bandwidth, high integration scales \rightarrow bulk of signal processing poor P_{sat}, PAE, F_{min}.

Harmonic techniques:

multiplication: low power, inefficient, nonlinear (16QAM ?, OFDM ?) harmonic mixing: high noise figure

Transistors for 100-1000 GHz systems

Transistor scaling laws: (V,I,R,C, τ) vs. geometry

Bulk and Contact Resistances

Available quantum states to carry current

Changes required to double transistor bandwidth

 $(\text{gate width} W_G)$

FET parameter	change
gate length	decrease 2:1
current density (mA/µm), g _m (mS/µm)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

(emitter length L_E)

constant voltage, constant velocity scaling

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

nearly constant junction temperature \rightarrow linewidths vary as (1 / bandwidth)²

THz Bipolar Transistors

515	emitter	512 16	256 8	128 4	64 2	<mark>32 nm width</mark> 1 Ω·μm² access ρ
	base	300 20	175 10	120 5	60 2.5	30 nm contact width, 1.25 Ω·μm ² contact ρ
	collecto	r 150 4.5 4.9	106 9 4	75 18 3.3	53 36 2.75	37.5 nm thick, 72 mA/μm² current density 2-2.5 V, breakdown
power a digital 2:	f _τ f _{max} mplifiers 1 divider	370 490 245 150	520 850 430 240	730 1300 660 330	1000 2000 1000 480	1400 GHz 2800 GHz 1400 GHz 660 GHz

InP HBT: Key Features

512 nm node: high-yield "pilot-line" process, ~4000 HBTs/IC

256 nm node:

Power Amplifiers: <a>>0.5 W/mm @ 220 GHz highly competitive mm-wave / THz power technology

128 nm node:

>500 GHz f_{τ} , >1.1 THz f_{max} , ~3.5 V breakdown breakdown* f_{τ} = 1.75 THz*Volts highly competitive mm-wave / THz power technology

64 nm (2 THz) & 32 nm (2.8 THz) nodes: Development needs major effort, but no serious scaling barriers

1.5 THz monolithic ICs are feasible.

InP Bipolar Transistor Scaling Roadmap

3-4 THz Bipolar Transistors are Feasible.

- 4 THz HBTs realized by:
- Extremely low resistivity contacts
- Extreme current densities
- Processes scaled to 16 nm junctions

Impact: efficient power amplifiers and complex signal processing from 100-1000 GHz.

Scaling Node	64	32	16	nm
Emitter Width	64	32	16	nm
Resistivity	2	1	0.5	Ω- μ m ²
Base Thickness	18	15	13	nm
Contact width	60	30	15	nm
Contact p	2.5	1.25	0.63	Ω- μ m ²
Collector Width	180	90	45	nm
Collector Width Thickness	180 53	90 37.5	45 26	nm nm
Collector Width Thickness Current Density	180 53 36	90 37.5 72	45 26 140	nm nm mA/µm ²
Collector WidthThicknessCurrent Density f_{τ}	180 53 36 1.0 1.0	90 37.5 72 1.4	45 26 140 2.0	nm nm mA/µm ² THz

InP Field-Effect-Transistor Scaling Roadmap

2-3 THz InP HEMTs are Feasible.

- 2 THz FETs realized by:
- Ultra low resistivity source/drain
- High operating current densities
- Very thin barriers & dielectrics
- Gates scaled to 9 nm junctions

Impact: Sensitive, low-noise receivers from 100-1000 GHz.

3 dB less noise \rightarrow need 3 dB less transmit power.

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

Can we make a 1 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C _{cb} /I _c	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
\rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	$f_{ au}$ $f_{ ext{max}}$	1000 2000	1000 2000	GHz GHz
	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

III-V vs. CMOS: A false comparison ?

III-V MOS has a reasonable chance of future use in VLSI

The real THz / VLSI distinction: Device geometry optimized for high-frequency gain vs. optimized for small footprint and high DC on/off ratio.

0.1-1THz IC Design

Challenges: 100-1000 GHz IC design

<u>Given</u>: we must use scaled, high - bandwidth transistors

Reduced breakdown is significant, but is not the main problem:

breakdown does not vary as (bandwidth)⁻¹

low breakdown is not the only problem

Interconnects and their parasitics

interconnect length should vary as (frequency)⁻¹ scaled device footprint: $(g_m / \text{area}) \propto (\text{current} / \text{area}) \propto (\text{frequency})^2$ scaled interconnect pitch: $\propto (\text{frequency})^{-1}$

Interconnects, footprintsnot scaled

 \rightarrow large interconnect LC parasitics

Interconnects, footprints scaled

 \rightarrow large interconnect resistance & skin loss

 \rightarrow small interconnect burnout current

 \rightarrow high IC power density

III-V MIMIC Interconnects -- Classic Substrate Microstrip

Line spacings must be ~3*(substrate thickness)

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Coplanar Waveguide

40 Gb/s differential TWA modulator driver note CPW lines, fragmented ground plane

35 GHz master-slave latch in CPW note fragmented ground plane

175 GHz tuned amplifier in CPW note fragmented ground plane

If It Has Breaks, It Is Not A Ground Plane !

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.

III-V MIMIC Interconnects -- Thin-Film Microstrip

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

 \rightarrow high line losses

 \rightarrow no high-Z_o lines

 \rightarrow low current capability

InP 150 GHz master-slave latch

VLSI mm-wave interconnects with ground integrity

negligible ground breaks @ device placements

still have problem with package grounding

...need to flip-chip bond

Also:

Ground plane at *intermediate level* permits critical signal paths to cross supply lines, or other interconnects without coupling.

(critical signal line is placed above ground, other lines and supplies are placed below ground)

RF-IC Design: Simple & Well-Known Procedures

There are many ways to tune port impedances: microstrip lines, MIM capacitors, transformers Choice guided by tuning losses. No particular preferences.

For BJT's, MAG/MSG usually highest for common-base. \rightarrow preferred topology.

Common-base gain is however reduced by: base (layout) inductance emitter-collector layout capacitance.

Modeling Interconnects: Digital & Mixed-Signal IC's

longer interconnects: **—** *lines terminated in* $Zo \rightarrow no$ *reflections.*

Shorter interconnects: _____ lines NOT terminated in Zo . But they are *still* transmission-lines. Ignore their effect at your peril !

If length << wavelength, or line delay<<risetime, short interconnects behave as lumped L and C.

Design Flow: Digital & Mixed-Signal IC's

2.5-D simulations run on representative lines. various widths, various planes same reference (ground) plane.

Simulation data manually fit to CAD line model effective substrate ε_r , effective line-ground spacing.

Width, length, substrate of each line entered on CAD schematic. rapid data entry, rapid simulation.

Resistors and capacitors: 2.5-D simulation \rightarrow RLC fit RLC model ---or simulation S-parameters --used in simulation.

42

High Speed ECL Design

Followers associated with inputs, not outputs

Double termination for least ringing, send or receive termination for moderate-length lines, high-Z loading saves power but kills speed.

Current mirror biasing is more compact. Mirror capacitance→ ringing, instability. Resistors provide follower damping.

High Speed ECL Design

Layout: short signal paths at gate centers, bias sources surround core. Inverted thin film microstrip wiring.

Key: transistors in on-state operate at Kirk limited-current. \rightarrow minimizes C_{cb}/I_c delay.

Key: transistors designed for minimum \mathbb{ECL} gate delay*, not peak (f_{τ} , f_{max}). *hand expression, charge-control analysis

Example: 8:1 205 GHz static divider in 256 nm InP HBT.

205 GHz divider, Griffith et al, IEEE CSIC, Oct. 2010

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

ICs in Thin-Film Inverted Microstrip

High Frequency Bipolar IC Design

Digital, mixed-signal, RF-IC (tuned) IC designs----at very high frequencies

Even at 670 GHz, design procedures differ little from that at lower frequencies:

Classic IC design extends readily to the far-infrared.

<u>Key considerations: Tuned ("RF") ICs</u> Rigorous E&M modeling of all interconnects & passive elements Continuous ground plane \rightarrow required for predicable interconnect models. Higher frequencies \rightarrow close conductor planes \rightarrow higher loss, lower current

<u>Key considerations: digital & mixed-signal :</u> Transmission-line modeling of <u>all</u> interconnects Continuous ground plane \rightarrow required for predicable interconnect models. Unterminated lines within blocks; terminated lines interconnecting blocks. Analog & digital blocks design to naturally interface to 50 or 75 Ω .

Design Examples, IC Results

InP HBT Integrated Circuits: 600 GHz & Beyond

614 GHz fundamental VCO M. Seo, TSC / UCSB

565 GHz, 34 dB, 0.4 mW output power

amplifier

J. Hacker, TSC

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

TELEDYNE SCIENTIFIC COMPANY

300 GHz fundamental PLL ^{M. Seo, TSC}

IMS 2011

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

Integrated 300/350GHz Receivers: LNA/Mixer/VCO M. Seo TSC

600 GHz Integrated Transmitter PLL + Mixer M. Seo TSC

220 GHz 90 mW power amplifier T. Reed, UCSB

Digital Logic: 30 GHz to 204 GHz in 12 Years

1998: 30 GHz \rightarrow 48 GHz

2000: 66 GHz

2001: 75GHz

2002: 87GHz

2004: 118 GHz

2004: 142 GHz, 150 GHz

2010: 204 GHz (with Teledyne)

Other InP HBT ICs in Inverted Microstrip

Teledyne InP HBT 256 nm, 512 nm

InP 8 GHz clock rate delta-sigma ADC (Krishnan, IMS 2003)

30 GHz digital SSB mixer / PFD for optical PLL (Bloch, IMS 2012)

10 Gb/s x 6-channel (+/- 12.5, +/- 37.5, +/- 62.5 GHz) WDM receiver IC for coherent optical links (H. Park, being tested)

40 Gb/s coherent optically-phase-locked BSPK optical receiver (Bloch, Park, ECOC 2012)

- Chine Ma	

40 Gb/s coherent optically-phase-locked QPSK optical receiver (E. Bloch, being tested)

50 GS/s Track/hold and sample/hold amplifiers Daneshgar, IEEE CSICS Oct. 2012

Teledyne: 600 GHz Common-Base Amplifier IC

• 12-Stage Common-base using inverted CPW-G architecture

- •2.8 dBm saturated output power
- •>20 dB gain up to 620 GHz

1360x340 μm²

M. Seo et al, Teledyne Scientific: IMS2013

90 mW, 220 GHz Power Amplifier

8-cell, 2-stage PA

90 mW, 220 GHz Power Amplifier

Reed (UCSB) and Griffith (Teledyne): CSIC 2012 Teledyne 250 nm InP HBT

RF output power densities up to 0.5 W/mm @ 220 GHz.

→ InP HBT is a competitive mm-wave / sub-mm-wave power technology.

220 GHz 330mW Power Amplifier Design

84 GHz Power Amplifier Design #1: 250 nm InP HBT

Simulations:

HBT: 16 fingers x 6um x 0.25um= 96 um x 0.25 um

Gain: 9.2dB

PAE: 35%

 P_{out} : 22.3 dBm (170 mW) \rightarrow 1.75 W/mm

Chip size: 450 μm x 780 μm

84 GHz Power Amplifier Design #2: 250 nm InP HBT

Simulations:

HBT: 96 fingers x 6um x 0.25um= 576 um x 0.25 um

Gain: 16.5dB

PAE: 24%

 P_{out} : 28.8 dBm (760 mW) → 1.3 W/mm Chip size: 1100 μm x 980 μm

220 GHz Vector Modulator / Phase Shifter Design

220 GHz Vector Modulator / Phase Shifter Design

220 GHz Vector Modulator / Phase Shifter Design

61

THz Electronics for Terabit fiber optics

Bandwidth of optical fiber: ~5 THz. Bandwidth of modern ICs: ~800GHz.

→ With THz transistors, and new IC toplogies, electrical ICs can access over 1 THz of the optical fiber spectrum

Integrated Circuits for Wavelength Division De-multiplexing in the Electrical Domain

Hyun-chul Park⁽¹⁾, Molly Piels⁽¹⁾, Eli Bloch⁽²⁾, Mingzhi Lu⁽¹⁾, Abirami Sivananthan⁽¹⁾, Zach Griffith⁽³⁾, Leif Johansson⁽¹⁾, John Bowers⁽¹⁾, Larry Coldren⁽¹⁾, and Mark Rodwell⁽¹⁾

submitted to ECOC 2013

Closing

Where Next $? \rightarrow 2$ THz Transistors, 1 THz Radios.

transmitter

receiver

interconnects

circuits

THz and Far-Infrared Electronics

IR today→ *lasers* & *bolometers* → *generate* & *detect*

Far-infrared ICs: <u>classic</u> device physics, <u>classic</u> circuit design

Power, power-added efficiency, noise figure are all very important

fundamental-mode operation, not harmonic generation

The transistors will scale to at least 2 THz bandwidths

Even 1-3 THz ICs will be feasible

(backup slides follow)