Transistors for THz Systems

Mark Rodwell, UCSB

rodwell@ece.ucsb.edu

Co-Authors and Collaborators: Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company

Teledyne IC Design Team: M. Seo, J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company

UCSB HBT Team: J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell Recent Graduates: V. Jain, E. Lobisser, A. Baraskar,

UCSB IC Design Team: S. Danesgar, T. Reed, H-C Park, Eli Bloch

DC to Daylight. Far-Infrared Electronics

100+ Gb/s wireless networks

Video-resolution radar \rightarrow fly & drive through fog & rain

near-Terabit optical fiber links

THz Transistors: Not Just For THz Circuits

Frequency, Hz

THz Communications Needs High Power, Low Noise

140 GHz, 10 Gb/s spatially scanned network node

340 GHz, 160Gb/s spatially multiplexed (MIMO) backhaul

Real systems with real-world weather & design margins, 500-1000m range: Will require:

3-7 dB Noise figure, 50mW- 1W output/element, 64-256 element arrays → InP or GaN PAs and LNAs, Silicon beamformer ICs

THz Communications Needs High Power, Low Noise

140 GHz, 10 Gb/s spatially scanned network node

340 GHz, 160Gb/s spatially multiplexed (MIMO) backhaul

Real systems → LNAs with low Fmin, PAs with high Psat & high PAE

Comparing technologies

InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. CMOS is great for signal processing, but noise, power, PAE are poor. Harmonic generation is low power, inefficient. Harmonic mixing is noisy. 5

III-V PAs and LNAs in today's wireless systems...

THz Device Scaling

nm Transistors, Far-Infrared Integrated Circuits

IR today \rightarrow lasers & bolometers \rightarrow generate & detect

Far-infrared ICs: classic device physics, classic circuit design

It's all about the interfaces: contact and gate dielectrics...

...wire resistance,...

...heat,...

band structure and density of states !

Transistor scaling laws: (V,I,R,C,t) vs. geometry

Available quantum states to carry current

Bulk and Contact Resistances

THz & nm Transistors: State Density Limits

of available quantum states / energy determines FET channel capacitance FET and bipolar transistor current access resistance of Ohmic contact

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Breakdown: Never Less than the Bandgap

band-band tunneling: base bandgap impact ionization: collector bandgap

Changes required to double transistor bandwidth

 $(\text{gate width} W_G)$

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

(emitter length L_E)

constant voltage, constant velocity scaling

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

nearly constant junction temperature \rightarrow linewidths vary as (1 / bandwidth)² 17

THz & nm Transistors: what needs to be done

Metal-semiconductor interfaces (Ohmic contacts): <u>very low resistivity</u> Dielectric-semiconductor interfaces (Gate dielectrics---FETs only): <u>thin !</u>

Ultra-low-resistivity (~0.25 Ω - μ m²), ultra shallow (1 nm), ultra-robust (0.2 A/ μ m²) contacts

THz InP HBTs

Scaling Laws, Scaling Roadmap

scaling laws: to double bandwidth

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

(emitter length L_E)

150	nm dev	vice	
	N.		
	1994		
	10		
	D.		
<u>100 nm</u>			

emitter	128	64	32 nm width
	4	2	1 Ω·μm² access ρ
base	120	60	30 nm contact width,
	5	2.5	1.25 Ω·μm² contact ρ
collector	75	53	<mark>37.5 nm</mark> thick,
	18	36	72 mA/μm ² current density
	3.3	2.75	2-2.5 V, breakdown
f _⊤	730	1000	1400 GHz
f _{max}	1300	2000	2800 GHz
RF-ICs	660	1000	1400 GHz
digital divider	330	480	660 GHz

HBT Fabrication Process Must Change... Greatly

32 nm width base & emitter contacts...self-aligned
32 nm width emitter semiconductor junctions
Contacts:
1 Ω-μm² resistivities

70 mA/ μ m² current density

~1 nm penetration depths

 \rightarrow refractory contacts

nm III-V FET, Si FET processes have similar requirements

Ultra Low-Resistivity Refractory Contacts

Contact performance sufficient for 32 nm /2.8 THz node.

Ultra Low-Resistivity Refractory Contacts

what resistivity should we expect ?

Ultra Low-Resistivity Refractory Contacts

Refractory Emitter Contacts

Мо

negligible penetration

HBT Fabrication Process Must Change... Greatly

thinner base metal → excess base metal resistance

Contraction of the lot

Undercutting of emitter ends

{101}A planes: fast

Sub-200-nm Emitter Contact & Post

Refractory contact, refractory post→ high-J operation Sputter+dry etch→ 50-200nm contacts Liftoff aided by TiW/W interface undercut Dielectric sidewalls

RF Data: 25 nm thick base, 75 nm Thick Collector

Required dimensions obtained but poor base contacts on this run

nn 001[.]

E. Lobisser, ISCS 2012, August, Santa Barbara

DC, RF Data: 100 nm Thick Collector

THz InP HBTs From Teledyne

Fig. 2 Common-emitter IV characteristics of 130nm HBT normalized to emitter area

Fig. $4 f_t$ and f_{max} versus collector current at varying values of V_{CE} for $0.13 \times 2 \mu m^2$ HBT

Chart 31

Towards & Beyond the 32 nm /2.8 THz Node

Base contact process:

Present contacts too resistive (4 Ω – μ m²) Present contacts sink too deep (5 nm) for target 15 nm base

→ refractory base contacts

Emitter Degeneracy:

Target current density is almost 0.1 Amp/µm² (!) Injected electron density becomes degenerate. transconductance is reduced.

→ Increased electron mass in emitter

Refractory Base Process (1)

base surface not exposed to photoresist chemistry: no contamination low contact resistivity, shallow contacts low penetration depth allows thin base, pulsed-doped base contacts₃₄

Refractory Base Process (2)

Ru / Ti / Au

<2 nm Ru contact penetration

(surface removal during cleaning)

Degenerate Injection→ Reduced Transconductance

Degenerate Injection \rightarrow Reduced Transconductance

Degenerate Injection→ Reduced Transconductance

Degenerate Injection→ Reduced Transconductance

At & beyond 32 nm, we must increase the emitter effective mass.

Degenerate Injection→Solutions

At & beyond 32 nm, we must increase the emitter (transverse) effective mass.

Other emitter semiconductors: no obvious good choices (band offsets, etc.).

Emitter-base superlattice:

increases transverse mass in junction evidence that InAIAs/InGaAs grades are beneficial

Extreme solution (10 years from now):

partition the emitter into small sub-junctions, ~ 5 nm x 5 nm. parasitic resistivity is reduced progressively as sub-junction areas are reduced.

3-4 THz Bipolar Transistors are Feasible.

- 4 THz HBTs realized by:
- Extremely low resistivity contacts
- Extreme current densities
- Processes scaled to 16 nm junctions

Impact: efficient power amplifiers and complex signal processing from 100-1000 GHz.

Scaling Node	64	32	16	nm
Emitter Width	64	32	16	nm
Resistivity	2	1	0.5	Ω- μ m ²
Base Thickness	18	15	13	nm
Contact width	60	30	15	nm
Contact p	2.5	1.25	0.63	Ω- μ m ²
Collector Width	180	90	45	nm
Thickness	53	37.5	26	nm
Cumont Donaity	26		1.4.0	2
Current Density	36	72	140	mA/µm²
f_{τ}	36 1.0	1.4	2.0	mA/μm² THz

InP HBT: Key Features

512 nm node: high-yield "pilot-line" process, ~4000 HBTs/IC

256 nm node:

Power Amplifiers: <a>>0.5 W/mm @ 220 GHz highly competitive mm-wave / THz power technology

128 nm node:

>500 GHz f_{τ} , >1.1 THz f_{max} , ~3.5 V breakdown breakdown* f_{τ} = 1.75 THz*Volts highly competitive mm-wave / THz power technology

64 nm (2 THz) & 32 nm (2.8 THz) nodes: Development needs major effort, but no serious scaling barriers

1.5 THz monolithic ICs are feasible.

Can we make a 1 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C _{cb} /I _c	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
\rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	$f_{ au}$ $f_{ ext{max}}$	1000 2000	1000 2000	GHz GHz
	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions 44

THz InP Bipolar Transistor Technology

Goal: extend the operation of electronics to the highest feasible frequencies

THz InP Heterojunction Bipolar Transistors 1 THz device Scaling roadmap through 3 THz

emitter 512

base

power amplifiers 245

digital 2:1 divider 150

16

300

20

4.5

4.9

370

490

collector 150

256

175

10

106

520

850

430

240

9

8

Enabling Technologies :

~30 nm fabrication processes, extremely low resistivity (epitaxial, refractory) contacts, extreme current densities, doping at solubility limits, few-nm-thick junctions

60-600 GHz IC examples; demonstrated & in fab

Teledyne Scientific: moving THz IC Technology towards aerospace applications

64

2

60

2.5

53

36

2.75

1000

2000

1000

480

120

5

75

18

3.3

730

660

330

1300

32 nm width

37.5 nm thick.

1400 GHz

2800 GHz

1400 GHz

660 GHz

 $1 \Omega \cdot \mu m^2$ access ρ

30 nm contact width.

2-2.5 V. breakdown

1.25 $\Omega \cdot \mu m^2$ contact ρ

72 mA/µm² current density

204 GHz digital logic (M/S latch)

670 GHz amplifier

300 GHz fundamental phase-lock-loop

THz InP HEMTs and III-V MOSFETs

Changes required to double transistor bandwidth

 $(\text{gate width} W_G)$

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

(emitter length L_E)

constant voltage, constant velocity scaling

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

nearly constant junction temperature \rightarrow linewidths vary as (1 / bandwidth)² ₄₇

FET scaling challenges...and solutions

Gate barrier under S/D contacts → high S/D access resistance addressed by S/D regrowth

High gate leakage from thin barrier, high channel charge density (almost) eliminated by ALD high-K gate dielectric

Other scaling considerations:

low InAs electron mass \rightarrow low state density capacitance $\rightarrow g_m$ fails to scale increased m^{*}, hence reduced velocity in thin channels minimum feasible thickness of gate dielectric (tunneling) and channel

III-V MOS

Peak transconductance; VLSI-style FET: 2.5 mS/micron ~85% of best THz InAs HEMTs

III-V MOS will soon surpass HEMTs in RF performance

40 nm devices are nearly ballistic

FET Drain Current in the Ballistic Limit

In ballistic limit, current and transconductance are set by: channel & dielectric thickness, transport mass, state density

50

Transit delay versus mass, # valleys, and EOT

FET Scaling: fixed vs. increasing state density

Need higher state density for ~10 nm node

2-3 THz Field-Effect Transistors are Feasible.

- 3 THz FETs realized by:
- Ultra low resistivity source/drain
- High operating current densities
- Very thin barriers & dielectrics
- Gates scaled to 9 nm junctions

- Impact: Sensitive, low-noise receivers from 100-1000 GHz.
- 3 dB less noise \rightarrow need 3 dB less transmit power.

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

4-nm / 5-THz FETs: Challenges

Thin wells have high scattering rate

Need single-atomic-layer control of thickness Need high *quantization* mass *m_a*.

III-V vs. CMOS: A false comparison ?

III-V MOS has a reasonable chance of future use in VLSI

The real THz / VLSI distinction: Device geometry optimized for high-frequency gain vs. optimized for small footprint and high DC on/off ratio.

Conclusion

THz and Far-Infrared Electronics

IR today \rightarrow lasers & bolometers \rightarrow generate & detect

Far-infrared ICs: <u>classic</u> device physics, <u>classic</u> circuit design

It's all about classic scaling: contact and gate dielectrics...

...wire resistance,...

...heat,...

...& charge density. band structure and density of quantum states (new!). Even 1-3 THz ICs will be feasible (backup slides follow)

Electron Plasma Resonance: Not a Dominant Limit

