Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy

*D. Cohen-Elias¹, J.J.M. Law¹, H.W. Chiang¹, A. Sivananthan¹, C. Zhang¹, B. J. Thibeault¹, W.J. Mitchell¹, S. Lee¹, A.D. Carter¹, C.-Y. Huang¹, V. Chobpattana², S. Stemmer², S. Keller¹, M. J.W. Rodwell¹

¹ECE and ²Materials Departments University of California, Santa Barbara, CA

Goal: FinFET with 2-4 nm Body Thickness

Intel L_g=60nm III-V FinFET (IEDM 2011)

30 nm fin: too thick at 60 nm gate length

For good electrostatics, need fin thickness ~ (gate length/2) S. H. Park et al., NNIN Symposium Feb 2012.

8nm gate length \rightarrow need <4 nm thick fin

Goal: Tall Fins for High Drive Current

Goal: large on-current from small transistor footprint.

Goal: fin height >> fin pitch (spacing)

Goal: Fins with Integrated N+ Source/Drain

regrowth \rightarrow small S/D pitch \rightarrow High Integration Density

Why Not Dry-Etch a 2nm Fin ?

Goal: 2-4 nm thickness, 100+ nm height

**metallization-induced damage increases D_{it}:* Burek *et al*, JVST B. 29,4, Jul/Aug 2011; *Dry-etching may well do similar surface damage*

serious process challenges

FinFETs by Atomic Layer Epitaxy

Fin thickness defined by Atomic layer epitaxy (ALE)

 \rightarrow nm thickness control

Fin height defined by sidewall growth

 \rightarrow 200 nm high fins

thin, tall fins \rightarrow few-nm L_g , high currents

ALE-Defined finFET: Process Flow

Fin Template

SiN hard mask: Ridges oriented along [011]

H₃PO₄: HCL etch: facet-selective, material-selective forms vertical (011) sidewalls stops on InGaAs etch-stop

InGaAs etch-stop:

defines template height \rightarrow defines fin height

(011

Channel Growth by Atomic Layer Epitaxy

1 monolayer growth per cycle.

Channel Growth by Atomic Layer Epitaxy

Growth:

lattice-matched InGaAs 20 ALE cycles \rightarrow <10 nm channel

Masked growth:

no InGaAs growth on top of template

Details:

one ALE cycle = 10 sec TMGa/TMI, 10 sec H_2 , 10 sec TBAs, 10 sec H_2 450 C growth

Dummy Gate: Patterns Source and Drain

Mask

HSQ* : E-beam definable SiO₂ ALD Al₂O₃ mask sub-layer: adhesion

*HSQ: Hydrogen silsesquioxane

Source Drain Regrowth

MOCVD Regrowth 600C lattice-matched N+ InGaAs, 5*10¹⁹/cm³ doping

S/D Regrowth: Filling vs. Sidewall Regrowth

Present process:

S/D regrowth partly fills spaces between fins

Target process:

S/D sidewall regrowth by ALE

 \rightarrow large contact area \rightarrow low access resistance

Source Drain Regrowth

Fin Release

fin release: H₃PO₄:HCl selective wet-etch etches InP stops on InGaAs

Fin Release

Why Not Release Fins Before S/D Regrowth ?

Images of released ~10 nm fins:

S/D regrowth provides mechanical support

ALD Gate Dielectric, ALD Gate Metal

Source and Drain Metal

TEM Images

Where is the DC Data ?

Present finFETs: very high leakage

Planar FET: thermal Ni gate finFET: ALD TiN gate interface damage ?

Planar FET: 100 interface finFET: 011 interfaces ALD surface preparation ? Planar InAs/InGaAs MOSFET Lee et al, 2013 VLSI symposium

3-D Transistors to Extend Moore's Law

Lundstrom: high S/D tunneling @ 4-7 nm L_g \rightarrow increase m* as L_a decreases

Implication: FETs won't improve with scaling increased m* → decreased v_{inj} → decreased I_{on}, increased CV/I

If we scale only to increase the IC packing density, why reduce L_q ?

FinFETs by Atomic Layer Epitaxy

ALE-defined fin
→ few-nm thick channels
→ scaling to 8nm gate length

200 nm fin height →enhance drive current

$$\frac{\text{current}}{\text{transistor width}} = J_{\text{surface}} \cdot \frac{\text{fin height}}{\text{fin pitch}}$$

Thank You

