Low Power III-V InGaAs MOSFETs Featuring InP Recessed Source/Drain Spacers with I_{on}=120 µA/µm at I_{off}=1 nA/µm and V_{DS}=0.5 V

<u>C. Y. Huang¹</u>, S. Lee¹, V. Chobpattana², S. Stemmer², A. C. Gossard^{1,2}, B. Thibeault¹, W. Mitchell¹ and M. J. W. Rodwell¹

¹Electrical and Computer Engineering ²Materials Department University of California, Santa Barbara

IEDM 2014 San Francisco, CA, USA

Outline

- Problem: III-V MOSFETs are very leaky
- Gate-last Process Flow
- Knob 1: Wide band-gap barrier
- Knob 2: Source/Drain vertical spacer
- Knob 3: Ultrathin channel
- Knob 4: Recessed InP S/D spacer
- Knob 5: Doping-graded InP spacer
- Summary

InGaAs/InAs FETs are leaky!

- III-V channel: low electron effective mass, high velocity, high mobility→ higher current at lower V_{DD} ^(C)
- Low band gap→ band-to band tunneling (BTBT) ⁽⁸⁾
- High permittivity → worse electrostatics, large DIBL ⁽²⁾
- Goal: reduce leakage current for low power logic!

300K	Si	Ge	GaAs	InAs	In _{0.53} Ga _{0.47} As	\hat{E}^{10^1} $V_{cc}=0.5 V$
m _e *	0.19	0.08	0.063	0.023	0.041	
µ _e (cm²/V·s)	1450	3900	9200	33000	12000	$\sum_{i=1}^{5} 10^{-1}$ $V_{\rm DS} = 0.05$
µ _h (cm²/V⋅s)	370	1800	400	450	<300	$ \begin{array}{c} $
Eg(eV)	1.12	0.664	1.424	0.354	0.75	tu 10 ⁻⁴ 40 nm 9 10 ⁻⁴ - 70 nm
ε _r	11.7	16.2	12.9	15.2	13.9	$3 \rightarrow 90 \text{ nm}$ $3 \rightarrow 10^{-5}$
a(Å)	5.43	5.66	5.65	6.06	(InP)	-0.2 0.0 0.2 0.4 0.6 Gate Bias (V)

el al...

UCSB Gate Last Process Flow

Knob 1: Wide Band-gap Barrier

- Wide band-gap barriers or Pdoped back barriers reduces bottom leakage path.
- Solution 1: AIAsSb barriers (Sample B) reduces subthreshold leakage.
- Solution 2: P-doped InAIAs barriers also work well.

Knob 2: Source/Drain Vertical Spacer

Vertical spacers reduce the peak electric field, improve electrostatics, and reduce BTBT floor.

Knob 3: Ultra-thin channel

7

Increasing band gap: In_{0.53}Ga_{0.47}As channel

Reducing channel thickness improves electrostatics, increases confinement bandgap and reduces BTBT.

E-field and BTBT contour

R. Chu et al., EDL 29, 974 (2008)

J. Lin et al., EDL 35, 1203 (2014)

- Concentrated electric field at the drain end of the channel next to the gate edge.
- Solution:

Replace InGaAs with wide band-gap InP (E_q~1.35 eV)

Knob 4: Recessed InP S/D spacer

InP spacer thickness: subthreshold

Minimum spacer thickness is required to maintain good electrostatics.

Thicker spacer is desired at drain to smooth electric field.

InP spacer thickness: on-state

Thicker InP spacer increases R_{on}, and degrades G_m

Thinner spacer is desired at source to reduce R_{S/D}.

Knob 5: Doping-graded InP spacer

- Doping-graded InP spacer reduces parasitic source/drain resistance and improves G_m.
- Gate leakage limits I_{off}~300 pA/μm.

Doping-graded InP spacer+Thicker oxide

- Minimum I_{off} ~ 60 pA/ μ m at V_D=0.5V for L_g-30 nm
- 100:1 smaller I_{off} compared to InGaAs spacer

I_{on} vs L_g at $I_{off} = 1 nA/\mu m$

 Peak I_{on}= 150 μA/μm at V_{DS}=0.5V for L_g-45 nm devices.

l_{on} vs L_g at l_{off} = 100 nA/μm

This work, 4.5 nm InGaAs channel, InGaAs spacer This work, 3 nm InGaAs channel, InGaAs spacer This work, 4.5 nm InGaAs channel, 5 nm InP spacer This work, 4.5 nm InGaAs channel, graded InP spacer, 30A ZrO2 This work, 4.5 nm InGaAs channel, graded InP spacer, 38A ZrO2 💥 UCSB VLSI 2014, Planar, 2.7 nm InAs channel MIT IEDM 2013, Planar, Composite channel Sematech IEDM 2013, Trigate, In_{0.53}GaAs channel Intel IEDM 2011, Trigate, In_{0.53}GaAs channel Intel IEDM 2009, Planar, In, GaAs channel Purdue IEDM 2012, Nanowire, In_{0.53}GaAs channel Teledyne IEDM 2012, Planar, In, GaAs channel

- Peak I_{on} = 415 µA/µm at V_{DS} = 0.5V for this work.
- Ultrathin InAs channel shows highest I_{on}.

Recessed InP source/drain spacers enable III-V MOSFETs for low power logic.

Thank you!

- This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.009) and GLOBALFOUNDRIES(Task 2540.001).
- A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network.
- This work was partially supported by the MRSEC Program of the National Science Foundation under Award No. DMR 1121053.