III-V MOS: Planar and Fin Technologies

M.J.W. Rodwell, UCSB

III-V MOS: S. Lee, C.-Y. Huang, D. Elias, V. Chobpattanna, J. Law, A.C. Gossard, S. Stemmer, UCSB; T. Kent, A. Kummel, UCSD; P. McIntyre, Stanford.

Transport Modeling: P. Long, S. Mehrotra, M. Povolotskyi, G. Klimeck, Purdue III-V vs. Si: Low $m^* \rightarrow$ higher velocity. Fewer states \rightarrow less scattering \rightarrow higher current. Can then trade for lower voltage or smaller FETs.

<u>Problems</u>: Low $m^* \rightarrow$ less charge. Low $m^* \rightarrow$ more S/D tunneling. Narrow bandgap \rightarrow more band-band tunneling, impact ionization.

Why III-V MOS ? \rightarrow important but less well-known reasons

nm-precise epitaxy, large heterojunction $\Delta E_c \rightarrow 1$ nm thick channels

Excellent contacts now. Better contacts feasible.

Dielectric-channel interface: Large ΔE_c , no SiO₂ at interface \rightarrow smaller EOT

http://nano.boisestate.edu/research-areas/gate-oxide-studies/

Planar UTB FETs might just scale to 10nm L_g: nm epitaxial control of channel thickness high-energy barriers (AlAsSb) InAs/InGaAs channel possibly thinner high-K than in Si. vertical spacer greatly aids short-channel effects simulations suggest that, with spacers, even S/D tunneling is OK.

And with ALE techniques, few-nm- L_g III-V finFETs are also feasible.

HfO

gate

barrier

S

```
Compared to Silicon MOS,...
```

...can we get high I_{on} ,

..and low ${\rm I}_{\rm off}$, and low ${\rm V}_{\rm DD}$,

...at a VLSI-<u>relevant</u> (8-10nm) technology node ?

Performance @ e.g. 35nm is not important !

Small S/D pitch, not just small L_g, is essential !

Leakage, short-channel effects, performance comparisons

off-state leakage mechanisms:

- electrostatics / aspect ratio
- bottom barrier injection
- growth defects

Band-band tunneling, S/D tunneling, impact ionization

Lateral depletion region reduces severity of most short-channel effects (not VLSI-compatible)

Leakage, short-channel effects, performance comparisons

off-state leakage mechanisms:

- xx growth defects

Band-band tunneling, S/D tunneling, impact ionization

Small S/D contact pitch

MOS-HEMT with large contact pitch

no lateral gate-drain_space

~20 nm gate-drain space

Lateral depletion region reduces severity of most short-channel effects (not VLSI-compatible)

Examples from literature: gate-drain lateral spacers

Chang *et al.*: IEDM 2013: 150nm gate-drain spacer

Lin et al. : IEDM 2013: 70nm S/G, G/D spacers

T. W. Kim *et al.*, IEDM2012 ~16 nm S/G, G/D spacers

D. H. Kim *et al.*, IEDM2012 ~100nm S/G, G/D spacers

We must build devices with small S/D pitch.

contact pitch ~ 3 times lithographic half-pitch (technology node dimension)

Small S/D pitch hard to realize if we require ~20-50nm lateral gate-drain spacers !

III-V MOSFET development process flow

Development process flow

Manufacturing process flow

While our fast development process flow <u>does not provide</u> a small S/D contact pitch, in manufacturing, the vertical spacer <u>will provide</u> a small S/D contact pitch.

III-V MOSFET development process flow

Development process flow

Simple, 4-day, 16nm process \rightarrow learn quickly !

Low-damage: avoids confusing dielectric characterization.

Critical dimensions are scaled: L_g , channel thickness, (N+ S/D):G separations.

Process otherwise <u>not</u> scaled: large gate overlap, large S/D contact separations. increases gate leakage, increases access resistance.

Process is not now self-aligned, but could be made self-aligned.

TEM Cross-Section, Summer 2013

High Transconductance III-V MOSFETS: 2013 VLSI Meeting

Lee et al, 2013 VLSI Symposium, May

8 nm channel (5 nm/3 nm InAs/In_{0.53}Ga_{0.47}As) and ~4 nm HfO₂ high-k dielectric At time, record g_m over all gate lengths (i.e. 2.45 mS/µm at 0.5 V_{DS} for 40 nm- L_g)

High Transconductance III-V MOSFETS: 2013 VLSI Meeting

93 mV/dec @ 500 nm-L_g but > 400 mV/dec @ 40 nm-L_g. *Extremely Poor Short-Channel Effects*

Lee et al, 2013 VLSI Symposium, May

Reducing Leakage: 3nm vs. 8nm High-Field Spacer

Reduced off-state leakage, improved short-channel effects, very high g_m & I_{on}.

Reducing Leakage: 9nm vs. 7.5nm Channel Thickness

Better electrostatics, higher bandgap \rightarrow Reduced I_{off} , improved subthreshold swing, slightly less $g_m \& I_{on}$.

Vertical spacers: some details

Minimum S/D contact pitch: depends upon regrowth angle we need to work on this. [010] gate orientation should help

Spacer sidewalls are gated through the high-K.

Capacitance to UID sidewalls is negligible. about 0.2 fF/μm << the ~1.0fF/μm interelectrode capacitances.

Capacitance to N+ contacts layers is large. easy to eliminate: low- ε_r sidewall spacer.

Deliberate band offset between spacer & channel compensates offset from strong quantization in channel.

To reduce off-state leakage:

thinner channels (quantization) \rightarrow less band-band tunneling thinner channels & dielectrics \rightarrow better electrostatics

To increase on-state current: thinner channels & dielectrics

<u>Much</u> better results to be reported: Lee et al.: EDL (in press) Lee et al.: 2014 VLSI Symposium (June) Thin Wells: Gate Leakage ?

In a thin InGaAs well, does the bound state energy rise to the point that dielectric leakage becomes high?

Berinder Brar, Herbert Kroemer, James Ibbetson, and John H. English Appl. Phys. Lett. 62 (25), 21 June 1993 2.0 Non-parabolic InAs - AISb -Measured data Fransition Energy [eV] 1.5 1.0 0.5 1.5 2.0 25 3.03.5

Photoluminescence from narrow InAs-AISb quantum wells

FIG. 3. Comparison between measured and calculated transition energies. The calculation assumes a spatially indirect transition.

w, [nm]

1.5nm well: $(E_{bound}-E_c)=0.5 \text{ eV}$

1.0

Brar data agrees well with:

0.5

0.0

- Boykin, APL, 21 March 1994 (simulations)
- 2) Recent simulations by Povolotskyi (Purdue)
- Recent unpublished UCSB FET data

Thermal Emission from Source over Back Barrier.

InGaAs-InAlAs barrier is 0.5 eV

Fermi level is 0.3~0.5 eV above conduction-band in the N+ source.

Barrier is only 0.1~0.25 eV above Fermi level.

Thermionic emission flux:

 $J_{thermionic} \approx q(kT/m^*)^{1/2} N_c \exp((E_f - E_c)/kT)$ = 5 \mu A/\mu m^2 for 0.2 eV barrier.

Need increased barrier energy.

Again, effect is less evident in MOS-HEMTs due to larger N+ S/D separation.

AlAsSb Back Barrier: Stops Barrier Thermal Leakage

AlAsSb layer: 0.5 eV increase in barrier. Expect ~10⁸:1 less thermal emission from source.

AlAsSb Back Barrier, P-doped layer, better isolation

AlAsSb barrier shows lower off-state current and better SS as compared to P-InAlAs barrier.

III-V MOS: how small can we make Lg ?

Planar UTB FETs might just scale to 10nm L_g: Unlike Si !

nm epitaxial control of channel thickness high-energy barriers (AlAsSb)

possibly thinner high-K than in Si.

vertical spacer greatly aids short-channel effects

simulations suggest that, with spacers, even S/D tunneling is OK.

And with ALE techniques, few-nm L_g III-V **finFETs** are also feasible.

FinFETs by Atomic Layer Epitaxy: Why ?

Electrostatics:

body must be thinner than $\sim L_g/2$ \rightarrow less than 4 nm thick body for 8 nm L_q

<u>Problem</u>: threshold becomes sensitive to body thickness

 $\delta V_{th} \propto \delta T_{body} / T_{body}^3$

<u>Problem</u>: low mobility unless surfaces are very smooth

$$\mu \propto T_{body}^6 / \delta T_{body}^2$$

<u>Implication</u>: At sub-8-nm gate length, need : extremely smooth interfaces extremely precise control of channel thickness

side benefit: high drive current→ low-voltage, low-power logic

ALE-defined finFET

Images

100nm UCSB 10/24/2013 X 110,000 10.0kV SEI SEM WD 7.6mm 2:59:50

Cohen-Elias et al., DRC 2013

Tall Fins for Low-Power, Low-Voltage Logic

Low-voltage (near- V_{τ}) operation:

low CV^2 dissipation, but low current \rightarrow long interconnect delays

Increased fin height→ increased current per unit die area → interconnect charging delays reduced

Supply reduced from 500mV to 268 mV while maintaining high speed.

3.5:1 power savings ? Circa 2.5:1 when FET capacitances considered.

In progress:

thinner dielectrics, better contacts, better alignment \rightarrow greater I_{on} 10nm L_g FETs: prove that spacer kills S/D tunneling leakage. ultra-thin InGaAs & InAs channels low off-current

If we can:

InAs ALE-finFETs @ 10nm $L_g \rightarrow$ high performance 110-oriented PMOS finFET \rightarrow performance approaching NMOS

(end)

Backup slides