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Why III-V MOS ? 

III-V vs. Si: Low m*→ higher velocity.   Fewer states→ less scattering 
     → higher current.  Can then trade for lower voltage or smaller FETs. 

Problems: Low m*→ less charge.   Low m* → more S/D tunneling. 
Narrow bandgap→ more band-band tunneling, impact ionization. 
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Excellent contacts now. 
Better contacts feasible. 

Why III-V MOS ? → important but less well-known reasons 
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nm-precise epitaxy, large heterojunction DEC→ 1nm thick channels 

Dielectric-channel interface: 
Large DEC, no SiO2 at interface→ smaller EOT 

(1nm hard for SOI) 



III-V MOS: how small can we make Lg ? 

Planar UTB FETs might just scale to 10nm Lg: 
  nm epitaxial control of channel thickness 
  high-energy barriers (AlAsSb) 
  possibly thinner high-K than in Si. 
  vertical spacer greatly aids short-channel effects 
  simulations suggest that, with spacers, even S/D tunneling is OK. 

And with ALE techniques, few-nm-Lg III-V finFETs are also feasible. 



The Key question: 

...can we get high Ion , 

Compared to Silicon MOS,... 

..and low Ioff , and low VDD , 

...at a VLSI-relevant (8-10nm) technology node ? 

Performance @ e.g. 35nm is not important ! 

Small S/D pitch, not just small Lg, is essential ! 

Intel 22nm finFETs  Jan, IEDM 2012  
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Leakage, short-channel effects, performance comparisons 

off-state leakage mechanisms: 

Band-band tunneling, S/D tunneling,  impact ionization 

Small S/D contact pitch MOS-HEMT with large contact pitch vs. 

Lateral depletion region reduces severity of most short-channel effects (not VLSI-compatible) 



Leakage, short-channel effects, performance comparisons 

Band-band tunneling, S/D tunneling,  impact ionization 

Lateral depletion region reduces severity of most short-channel effects (not VLSI-compatible) 

Lin, IEDM2012 

UCSB 

off-state leakage mechanisms: 

Small S/D contact pitch MOS-HEMT with large contact pitch 

~20 nm gate-drain space 

no lateral gate-drain space 



Examples from literature: gate-drain lateral spacers  
Chang et al.: IEDM 2013:  
150nm gate-drain spacer 

Lin et al. : IEDM 2013: 70nm  S/G, G/D spacers  

T. W. Kim et al.,  IEDM2012 
~16 nm S/G, G/D spacers 

D. H.  Kim et al.,  IEDM2012 
~100nm S/G, G/D spacers 



We must build devices with small S/D pitch. 

contact pitch ~ 3 times lithographic half-pitch 
(technology node dimension) 

Small S/D pitch hard to realize if we require ~20-50nm lateral gate-drain spacers ! 



Vertical spacers: reduced leakage -- at small feasible S/D pitch 

vs. 



III-V MOSFET development process flow 

While our fast development process flow does not provide a small S/D contact pitch, 
in manufacturing, the vertical spacer will provide a small S/D contact pitch. 



III-V MOSFET development process flow 

Simple, 4-day, 16nm process→ learn quickly !  

Low-damage:  avoids confusing dielectric characterization. 

Process otherwise not scaled:  large gate overlap, large S/D contact separations. 
 increases gate leakage, increases access resistance.  

Process is not now self-aligned, but could be made self-aligned. 

Critical dimensions are scaled:  Lg, channel thickness, (N+ S/D):G separations. 



TEM Cross-Section, Summer 2013 



High Transconductance III-V MOSFETS: 2013 VLSI Meeting 

8 nm channel (5 nm/3 nm InAs/In0.53Ga0.47As)  and ~4 nm HfO2 high-k dielectric  
At time, record gm over all gate lengths (i.e. 2.45 mS/μm at 0.5 VDS for 40 nm-Lg) 
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High Transconductance III-V MOSFETS: 2013 VLSI Meeting 

93 mV/dec @ 500 nm-Lg but > 400 mV/dec @ 40 nm-Lg. 
Extremely Poor Short-Channel Effects 

-0.2 0.0 0.2 0.4 0.6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

V
DS

=0.5 V

 40 nm

 70 nm

 90 nm

V
DS

=0.05 V

C
u

rr
e

n
t 

D
e

n
s

it
y

 (
m

A
/

m
)

Gate Bias (V)

0.1 1

100

200

300

400

500
V

Th
 : Linear extrapolation at G

m_max T
h

re
s

h
o

ld
 V

o
lta

g
e

 (V
)

 V
DS

= 0.5 V

 V
DS

= 0.05 V 

Gate length (m)

S
u

b
th

re
s

h
o

ld
 S

w
in

g
 (

m
V

/d
e

c
)

0.0

0.1

0.2

0.3

0.4

0.5

 

-0.2 0.0 0.2 0.4 0.6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 V
DS

=0.05 V

V
DS

=0.5 V

SS ~ 93 mV/dec 

at V
DS

=0.05 V
C

u
rr

e
n

t 
D

e
n

s
it

y
 (

m
A

/
m

)

Gate Bias (V)

Lee et al, 2013 VLSI Symposium, May 



Reducing Leakage: 3nm vs. 8nm High-Field Spacer 

result 
Reduced off-state leakage, improved short-channel effects, very high gm & Ion. 



Reducing Leakage: 9nm vs. 7.5nm Channel Thickness 

result 

Better electrostatics, higher bandgap→ Reduced Ioff, improved subthreshold swing, slightly less gm & Ion. 
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Vertical spacers: some details 

Minimum S/D contact pitch: 
    depends upon regrowth angle 
    we need to work on this. 
    [010] gate orientation should help 
 
Spacer sidewalls are gated through the high-K. 
 
Capacitance to UID sidewalls is negligible. 
   about 0.2 fF/m 
   << the ~1.0fF/m interelectrode capacitances. 
 
Capacitance to N+ contacts layers is large. 
   easy to eliminate: low-r sidewall spacer. 
 
Deliberate band offset between spacer & channel 
     compensates offset from strong quantization in channel. 



Much Better Results to be Reported 

To reduce off-state leakage: 
 thinner channels (quantization)→ less band-band tunneling 
 thinner channels & dielectrics → better electrostatics 
 
To increase on-state current: 
 thinner channels & dielectrics 
 
Much better results  to be reported: 
 Lee et al.:  EDL (in press) 
 Lee et al.:  2014 VLSI Symposium (June) 



Thin Wells: Gate Leakage ? 

In a thin InGaAs well, does the bound state energy rise 
 to the point that dielectric leakage becomes high ? 

? 
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1.5nm well: (Ebound-Ec)=0.5 eV  

Brar data agrees well with: 
1)  Boykin, APL, 21 March 1994  (simulations) 
2)  Recent simulations by Povolotskyi (Purdue) 
3)  Recent unpublished UCSB FET data  



Thermal Emission from Source over Back Barrier.  

InGaAs-InAlAs barrier is 0.5 eV 
 
Fermi level is 0.3~0.5 eV above 
conduction-band in the N+ source. 
 
Barrier is only 0.1~0.25 eV above Fermi 
level. 
 
Thermionic emission flux: 

barrier. eV 0.2for  mA/ 5             

)/)exp((*)/(

2

2/1



 kTEENmkTqJ cfcthermionic

Need increased barrier energy. 

Again, effect is less evident in MOS-HEMTs 
due to larger N+ S/D separation. 



10 nm InGaAs channel 
High-K 

AlAsSb Back Barrier: Stops Barrier Thermal Leakage  

25 nm i-AlAsSb 

SI InP sub 
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AlAsSb layer:  
0.5 eV increase in barrier. 
Expect ~108:1 less thermal emission from source. 

130227C 

120807A 



AlAsSb Back Barrier, P-doped layer, better isolation 
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InAlAs FET: 88 nm Lg, 25 micron drawn Wg,  8 nm  InGaAs channel, 60 nm InGaAs Regrowth,  3.2 nm HfO2, 0 deg  

result 

AlAsSb barrier shows  lower off-state current  and better SS as compared to P-InAlAs barrier. 

AlAsSb FET: 90 nm Lg, 25 micron drawn Wg,  8 nm  InGaAs channel, 60 nm InGaAs Regrowth,  3.2 nm HfO2, 0 deg  
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caution: as-draw gate length and gate widths stated. Data not yet corrected for either. 



III-V MOS: how small can we make Lg ? 

Planar UTB FETs might just scale to 10nm Lg: 
  Unlike Si ! 
  nm epitaxial control of channel thickness 
  high-energy barriers (AlAsSb) 
  possibly thinner high-K than in Si. 
  vertical spacer greatly aids short-channel effects 
  simulations suggest that, with spacers, even S/D tunneling is OK. 

And with ALE techniques, few-nm Lg III-V finFETs are also feasible. 

Cohen-Elias et al., DRC 2013 



FinFETs by Atomic Layer Epitaxy: Why ? 

26 / bodybody TT  

Electrostatics:  
body must be thinner than ~Lg /2 
→ less than 4 nm thick  body  for 8 nm Lg 

Problem: 
 threshold becomes sensitive to body thickness 

3

bodybodyth TTV  

Problem: 
low mobility unless surfaces are very smooth 

Implication: At sub-8-nm gate length, need : 
 extremely smooth interfaces 
  extremely precise control of channel thickness 

side benefit: high drive current→ low-voltage, low-power logic 



ALE-defined finFET 

Fin template: formed by {110}-facet-selective etch→ atomically smooth 

Channel thickness set by ALE growth→ atomically precise 
Cohen-Elias et al., DRC 2013 
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Tall Fins for Low-Power, Low-Voltage Logic 

Supply reduced from 500mV to 268 mV while maintaining high speed. 

3.5:1 power savings ?  Circa 2.5:1 when FET capacitances considered. 

Low-voltage (near-VT ) operation: 
 low CV2 dissipation, but low current→ long interconnect delays 

Increased fin height→ increased current per unit die area 
 → interconnect charging delays reduced 
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What is next ? 

29 

In progress: 
    thinner dielectrics, better contacts, better alignment→ greater Ion 
    10nm Lg FETs: prove that spacer kills S/D tunneling leakage. 
    ultra-thin InGaAs & InAs channels low off-current 
 
If we can: 
     InAs ALE-finFETs @ 10nm Lg→ high performance 
     110-oriented PMOS finFET→ performance approaching NMOS 



(end) 
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