Record I_{on} (0.50 mA/µm at V_{DD} = 0.5 V and I_{off} = 100 nA/µm) 25 nm-Gate-Length ZrO₂/InAs/InAIAs MOSFETs

Sanghoon Lee^{1*}, V. Chobpattana², C.-Y. Huang¹, B. J. Thibeault¹, W. Mitchell¹, S. Stemmer², A. C. Gossard², and M. J. W. Rodwell¹

¹ECE and ²Materials Departments University of California, Santa Barbara, CA

2014 Symposium on VLSI Technology Honolulu, Hawaii, USA 06/10/2014

Why III-V MOSFETs in VLSI applications?

Low m* in III-V material \rightarrow high v_{inj} \rightarrow high transconductance

More transconductance per gate width more current \rightarrow lower intrinsic delay -or- reduced $V_{DD} \rightarrow$ less power consumption -or- small FETs \rightarrow reduced IC size

Other advantages

Wide range of available materials nm-precise growth \rightarrow 1-2 nm thick channel Larger $\Delta E_c \rightarrow$ Better confinement, Small EOT

http://nano.boisestate.edu/research-areas/gate-oxide-studies/

Key Design Considerations

FET Structures

Gate-Last Process (Simplified for Development)

Channel growth By MBE

Dummy gate formation

e-beam lithography

Vertical spacer and N+ S/D regrowth in MOCVD

Mesa-isolation Surface digital etching

Gate stack formation

S/D metal contact formation

High-k : MOSCAP with 0.7/5.0 nm $AI_2O_xN_y/ZrO_2$

- dielectric constant for ZrO₂ is 23; EOT is ~1 nm
- **3.5 μF/cm² accumulation capacitance at 1MHz**
- ~1X10¹² /cm²-eV D_{it} near midgap.
- Gate leakage < 1 A/cm² up V_G=2 V

(V. Chobpattana, et al., 'Scaled ZrO2 dielectrics for InGaAs gate stack with low interface trap densities', APL 2014)

Off-state leakage and S/D spacers

Vertical Spacers \rightarrow reduced off-state leakage

Cross-sectional STEM image

UCSB Courtesy of S. Kraemer (UCSB)

*Heavy elements look brighter VLSI 2014

I-V characteristics for long channel device ($L_g = 1 \mu m$)

- 61 mV/dec Subthreshold swing at V_{DS}=0.1 V
- Negligible hysteresis
- <1 A/cm² gate leakage at measured bias range

I-V characteristics for short channel devices ($L_a = 25 \text{ nm}$)

Source/drain series resistance

- From TLM measurement for N+S/D, $R_{N+S/D \text{ sheet}} = 25 \text{ ohm/sq}$, $\rho_c = \sim 5.3 \text{ ohm-}\mu m^2$
- R_{spacer} is estimated to be ~35 ohm-µm for both sides

Performance comparison: 2.5 nm VS 5.0 nm-thick channel

- Better SS at all gate length scale:
 - ← Better electrostatics, reduced BTBT
- ~1:10 reduction in minimum off-state leakage
- ~5:1 increase in gate leakage increased eigenstate

Performance comparison: 2.5 nm VS 5.0 nm-thick channel

SS and DIBL vs. L_g (Benchmarking)

[1] Lin IEDM 2013,[2] T.-W. Kim IEDM 2013,[3] Chang IEDM 2013,[4] Kim IEDM 2013
[5] Lee APL 2013 (UCSB), [6] D. H. Kim IEDM 2012,[7] Gu IEDM 2012,[8] Radosavljevic IEDM 2009

- <80 mV/dec at sub-30 nm L_g and V_{DS} =0.5 V
- Record low subtheshold swing among any reported III-V FETs.
- Lowest DIBL among planar-type III-V FETs.

Peak g_m and I_{on} at fixed I_{off} vs. L_g (Benchmarking)

[1] Lin IEDM 2013,[2] T.-W. Kim IEDM 2013,[3] Chang IEDM 2013,[4] Kim IEDM 2013
[5] Lee APL 2013 (UCSB), [6] D. H. Kim IEDM 2012,[7] Gu IEDM 2012,[8] Radosavljevic IEDM 2009

- >2.4 mS/ μ m peak g_m at V_{DS}=0.5 V and sub-30 nm L_g.
- Highest I_{on} at I_{off}=100 nA/µm and V_{DD}=0.5 V
- 0.5 mA/µm I_{on} at sub-30 nm L_g

Benchmark with 22 nm node Si Fin- and nanowire FET

- Intel 22 nm FinFETs (HP) : ~0.5 mA/µm (?) @ V_{GS}=0.5 V, V_{DS}=0.75 V
- IBM 22 nm nanowire : ~0.4 mA/µm @ V_{GS}=0.5 V, V_{DS}=0.5 V
- Comparable performance with state-of-the-art Si-FinFETs (nanowire).

Conclusion

- Developed vertical spacer to reduce off-state leakage and to improve short channel effect.
- Integrated sub-1 nm EOT ZrO₂ high-k with low D_{it}
- Obtained 61 mV/dec at $V_{DS} = 0.1$ V and 1 μ m-L_g.
- Obtained 0.5 mA/µm at I_{off} =100 nA/µm and V_{DD} =0.5 V (best reported I_{on} among any reported III-V MOSFETs)
- Achieved comparable I_{on} to state-of-art multi-gate Si-FETs

Thanks for your attention! Questions?

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.006). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.

