WSG Workshop: Performance Metrics for mm-Wave Devices and Circuits from the Perspective of the International Technology Roadmap for Semiconductors (ITRS), IEEE IMS Symposium, May 17, 2015, Phoenix

III-V HBT and (MOS) HEMT scaling

Mark Rodwell, University of California, Santa Barbara

THz Transistors: Systems Benefit from 5-500 GHz

Frequency, Hz

mm-Wave wireless: attributes & challenges

wide bandwidths available

short wavelengths \rightarrow many parallel channels

Need phased arrays

Need mesh networks

Receiver

mm-Waves: high-capacity mobile communications

60 GHz, 1 Tb/s Spatially-Multiplexed Base Station

128 users/face, 512 total users, each beam 2Gb/s

Needed: phased arrays, 50-500mW power amplifiers, low-noise-figure LNAs

mm-wave imaging radar: TV-like resolution

mm-waves \rightarrow high resolution from small apertures

Large NxN phased array

Frequency-scanned 1xN array

InP HBTs and HEMTs for PAs and LNAs

Cell phones and Higher-Performance WiFi sets: GaAs HBT power amplifiers GaAs PHEMT LNAs

29-34GHz: emerging bands for 5G InP HBT PAs, InP HEMT LNAs ?

Later: 60, 71-76, 81-86, 140 GHz

Heterojunction Bipolar Transistors

$$R_{ex} = \rho_{\text{contact}} / A_e$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Scaling Laws, Scaling Roadmap

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/μm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

Scaling Node	64	32	16	nm
Emitter Width	64	32	16	nm
Resistivity	2	1	0.5	Ω- μ m ²
Base Thickness	18	15	13	nm
Contact width	60	30	15	nm
Contact p	2.5	1.25	0.63	Ω- μ m ²
Collector Width	180	90	45	nm
Thickness	53	37.5	26	nm
Current Density	36	72	140	$mA/\mu m^2$
f_{τ}	1.0	1.4	2.0	THz
$f_{\rm max}$	2.0	2.8	4.0	THz

Can we make a 2 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C _{cb} /I _c	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
\rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	$f_{ au}$ $f_{ ext{max}}$	1000 2000	1000 2000	GHz GHz
-	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions 11

Energy-limited vs. field-limited breakdown

band-band tunneling: base bandgap impact ionization: collector bandgap

THz InP HBTs: Performance @ 130 nm Node

Refractory Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm / Performance sufficient for 32 nm /2.8 THz node.

Why no ~2THz HBTs today ? Problem: reproducing these base contacts in full HBT process flow

Refractory Blanket Base Metal Process (1)

Metal deposited on clean surface; no resist residue

Refractory Ru contact layer→ low penetration depth 2nm Pt reaction layer→ penetrate surface contaminants

Refractory Blanket Base Metal Process (2)

Blanket Base Metal Process

Parasitics along length of HBT emitter

Base pad & feed increases C_{cb}

Emitter undercut actual junction shorter than drawn. \rightarrow excess C_{cb} , excess base metal resistance

Base metal resistance adds to R_{bb}

all these factors decrease f_{max}

Emitter Length Effects: Decreased f_{max}

On a 2 μ m emitter finger, effect of base metal resistance can be comparable to adding 3 Ω - μ m² to the base contact resistivity !

Reducing Emitter Length Effects

Reducing Emitter Length Effects

before

after

Small Base Post Undercut

J. Rode in review

Reducing Emitter Length Effects

smaller contact penetration into base

J. Rode in review

200nm emitter InP HBT

200nm emitter width: High Fmax

160nm emitter width: Unmeasurable Fmax

on HBTs with

...shorter 1.9 µm emitter length ...narrower 170nm emitter width

 f_{max} cannot be measured because of calibration difficulties (small Y_{12})

 f_{max} probably above 1.1THz, but we cannot prove this.

Better fmax measurement would require on-wafer LRL standards.

We no do not at present have the resources to pursue this.

J. Rode in review

Regrowth for high β in THz HBTs ?

2-3 THz f_{max} HBTs need ~1.5*10²⁰ cm⁻³ doping under base contacts \rightarrow high Auger recombination \rightarrow low β .

Desire: high doping under contacts, lower doping elsewhere.

Regrowth processes enable this.

THz InP HBT Scaling Roadmap

130nm node: 550GHz f_{τ} , 1100 GHz f_{max}

Are the 64 nm and 32nm nodes feasible ?

Key challenge: base contacts

Recent demonstration of <2 Ω - μ m² contacts *in HBT process flow*.

Longer term challenge :

decoupling doping under contacts vs. under base

Scaling Node	64	32	16	nm
Emitter Width	64	32	16	nm
Resistivity	2	1	0.5	Ω- μ m ²
Base Thickness	18	15	13	nm
Contact width	60	30	15	nm
Contact p	2.5	1.25	0.63	Ω- μ m ²
Collector Width	180	90	45	nm
Thickness	53	37.5	26	nm
Current Density	36	72	140	$mA/\mu m^2$
f	1.0	14	2.0	THz
J_{τ}	1.0	1.7	2.0	1112

86 GHz InP HBT Power Amplifier

UCSB/Teledyne

Gain: 20.4dB S21 Gain at 86GHz Saturated output power: 188mW at 86GHz Output Power Density: 1.96 W/mm

PAE: 32.8%

Technology: 250 nm InP HBT

1.4 mm x 0.60 mm

High W/mm, very small die

Park et al, JSSC, Oct. 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6847236&tag=1

81 GHz InP HBT Power Amplifier

UCSB/Teledyne

Gain: 17.4dB S21 Gain at 81GHz

Saturated output power: 470mW at 81GHz

Output Power Density: 1.22 W/mm*

PAE: 23.4%

Power/(core die area): 1020W/mm²

Technology: 250 nm InP HBT

Park et al, JSSC, Oct. 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6847236&tag=1

214 GHz InP HBT Power Amplifier

UCSB/Teledyne

Gain: 25dB S21 Gain at 220GHz

Saturated output power: 164mW at 214GHz

Output Power Density: 0.43 W/mm

PAE: 2.4%

Technology: 250 nm InP HBT

(no die photo) 2.5mm x 2.1 mm

InP HBT Integrated Circuits: 600 GHz & Beyond

614 GHz fundamental VCO M. Seo, TSC / UCSB

620 GHz, 20 dB gain amplifier

M Seo, TSC IMS 2013

Not shown: 670 GHz amplifier: J. Hacker, TSC IMS 2013

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL M. Seo, TSC IMS 2011

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

Integrated 300/350GHz Receivers: LNA/Mixer/VCO M. Seo TSC

220 GHz 180 mW power amplifier T. Reed, UCSB CSICS 2013

81 GHz 470 mW power amplifier H-C Park UCSB IMS 2014

600 GHz Integrated Transmitter PLL + Mixer M. Seo TSC

Field-Effect Transistors

State of the Art (IMS 2014)

Recent Progress in Scaling InP HEMT TMIC Technology to 850 GHz

W.R. Deal, K. Leong, A. Zamora, V. Radisic and X.B. Mei

Northrop Grumman Corporation

Fig. 1. A STEM image of a 30 nm InP HEMT.

Fig. 7. Measured performance of 850 GHz amplifier. Magenta is s21, 1 s11 and blue is s22.

Fig. 6. Microphotograph of 850 GHz TMIC amplifier.

HEMTs: Key Device for Low Noise Figure

2:1 to 4:1 increase in $f_{\tau} \rightarrow$ greatly improved noise @ 200-670 GHz. Better range in sub-mm-wave systems; or use smaller power amps. Critical: Also enables THz systems beyond 820 GHz

$$R_{DS} \approx L_g / (W_g v \varepsilon)$$
 $R_S = R_D = \frac{\rho_{\text{contact}}}{L_{\text{S/D}} W_g}$

Field-Effect Transistor Scaling Laws

FET parameter	change
gate length	decrease 2:1
current density (mA/µm), g _m (mS/µm)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

Field-Effect Transistors No Longer Scale Properly

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{fringe}/g_m$ prevents f_{τ} scaling. Shorter gate lengths degrade electrostatics \rightarrow reduced g_m/G_{ds}

Scaling roadmap for InP HEMTs

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

Why THz HEMTs no longer scale; how to fix this

HEMTs: gate barrier also lies under S/D contacts \rightarrow high S/D access resistance S/D regrowth \rightarrow no barriers under contacts \rightarrow low $R_{S/D} \rightarrow$ higher f_{max} , lower F_{min}

As gate length is scaled, gate barrier must be thinned for high g_m, low G_{ds} HEMTs: High gate leakage when gate barrier is thinned→ cannot thin barrier ALD high-K gate dielectrics→ ultra-thin→ improved g_m, G_{ds}, increased (f_τ, f_{max})

Solutions to key HEMT scaling challenges have been developed during the development of III-V MOS for VLSI.

UCSB's Record VLSI-Optimized MOSFET @ 25nm L_q.

UCSB's Record VLSI-Optimized MOSFET @ 25nm L_q.

High Transconductance III-V MOSFETs

High g_m , with low G_{DS} , is critical for THz FETs

Here:

18nm gate length, 5nm InAs channel \rightarrow 3mS/µm g_m.

These FETs have large access resistance from non-self-aligned contacts; so g_m can be readily increased.

Future: shorter gates, thinner channels, better dielectrics better contacts \rightarrow higher g_m.

THz III-V MOS: Not the same as VLSI III-V MOS

III-V MOS has a reasonable chance of use in VLSI at the 7nm node These will *not* be THz devices

The real mm-wave / VLSI distinction: Device geometry optimized for high-frequency gain (THz) vs. optimized for small footprint & high DC on/off ratio (VLSI). mm-wave / THz devices: minimize overlap capacitances, drain offset for low C_{gd} & G_{ds}, thicker channels optimized for g_m, T-gates for low resistance

Prospects for Higher-Bandwidth CMOS VLSI

Recall:

Gate-dielectric can't scale much further. That stops g_m (mS/ μ m) from increasing. (end capacitance)/ g_m limits achievable f_{τ} .

Also: Given fixed dielectric EOT, G_{ds} degrades with scaling.

FinFETs have better electrostatics, hence better g_m/G_{ds}...

But in present technologies the end capacitances are worse.

InP Field-Effect-Transistor Scaling Roadmap

2-3 THz InP HEMTs are Feasible.

- 2 THz FETs realized by:
- Ultra low resistivity source/drain
- High operating current densities
- Very thin barriers & dielectrics
- Gates scaled to 9 nm junctions

Impact: Sensitive, low-noise receivers from 100-1000 GHz.

3 dB less noise \rightarrow need 3 dB less transmit power.

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{ m max}$	0.81	1.4	2.7	THz

Conclusions

Roadmap for High-Frequency Transistors

Beware of physics-free roadmaps

20% improvement /year extrapolations are meaningless. Real transistors are approaching scaling limits. VLSI transistors are optimized for density & digital, not RF. Lower standby power processes are slower RF processes.

Bandwidths of Si CMOS VLSI have leveled off.

There is market for application-specific high-frequency transistors. LNAs, PAs, front-ends generally. Just like cell phones today.

InP HBTs & HBTs have perhaps 2-3 scaling generations left. Doubling of bandwidth, perhaps a little more. Process technology development is getting quite hard.