Short course, Device Research Conference, June , 05: "Device Fundamentals You Were Never Taught: Interpreting Your Device Data"

Legend and Folklore: A bestiary of electronics

Mark Rodwell, University of California, Santa Barbara Short course, Device Research Conference, June , 05: "Device Fundamentals You Were Never Taught: Interpreting Your Device Data"

Legend and Folklore: A bestiary of electronics

"Must-Haves" for a Useful Electron Device

Mark Rodwell, University of California, Santa Barbara C.-Y. Huang, J. Rode, S. Lee, V. Chobpattanna, P. Choudhary, A.C. Gossard, S. Stemmer ECE and Materials Departments, University of California, Santa Barbara

P. Long, E. Wilson, M. Povolotskyi, G. Klimeck Network for Computational Nanotechnology, Purdue University

M. Urteaga, J. Hacker, M. Seo, Z. Griffith, M. Fields, B. Brar Teledyne Scientific and Imaging *Now Sunkyunkwan University.*

Legend and Folklore: a bestiary of electronics

Let us now go hunting ...

Terra incognita: beyond the transistor

"Moore's law, transistor scaling, is over."

"We need more than Moore"

"We need new paradigms beyond charge as a state variable"

(Why do paradigms always shift?)

Moore: predicted doubling of performance every ~18 months

Dennard: Proposed FET scaling laws (these now broken)

Robert and Gordon: What's your problem ?

FETs will stop working when we make them much smaller.

Oxide tunneling Source-drain tunneling

Lithography is getting hard.

minimum focus spot size deep UV absorbtion

Power density is becoming excessive

 $C_{wire}V_{DD}^{2}$ interconnect energy

Static leakage > I_{on}exp(-qV_{DD}/kT)

How electronics works today (same as in 1912)

Switching using charge-control

tubes

bipolar transistors field-effect transistors

electrostatic barrier

Communicating using... ...wires.

Time for new state variables ?

our tool-kit:

Gravitonics ?

Quarkonics ? gluonics?

Neutrinoonics ?

Mechanics ? millions of heavy nuclei ...

Magnetics ? $F \sim v_1 v_2 / c^2 \rightarrow weak!$

Our forebears chose wisely

Charge-control devices (switches) seem best

confine & release charge using electrostatic barrier. electrons are light electrostatic force is strong over moderate* range.

Communicating using wires seems best

signal using E&M waves guide them using wires E&M waves are strong & long-range. wires can be very narrow

http://semimd.com/chipworks/2014/10/27/intels-14nm-parts-are-finally-here/ca

*range ~ source size, given $\nabla^2 \phi = 0$

Two older computing technologies

Nerve Cells

Cellular chemistry

Krebs Cycle (Citric Acid Cycle)

cascaded, inter-regulating chemical reactions = computing machine

Both are charge-control dense slow long development (~10⁹ years) large installed base

"C_{wire}V² dissipation constrains VLSI; optical interconnects will fix this."

Optical interconnects are better ?

Aren't they both E&M waves ?

So: what's the difference ? Both store energy $\varepsilon E^2/2 + \mu H^2/2$, a.k.a. $CV^2/2 + LI^2/2$

Wires can be either capacitors or transmission-lines

- echoes or not
- T-lines: static dissipation
- Capacitors: CV²/2 dissipation per transition

 $C_{wire} = l / v Z_0$

If you shine a laser at a mirror, ...does it stop drawing current ?

Optical interconnects have static dissipation

#photonstransmitted = $C_c V_{dd} / hv$ #photonsneeded = $C_{in} V_{dd} / hv$

Other issues

optical losses

bend radius

20nm contact pitch ?

optics benefit: lower loss in longer interconnects

Where to use optics: longer interconnect buses where switching activity is high

Can man live at such speeds ?

"Can man live at such speeds ?"

Stephenson's Rocket, 1829

"Stephenson's Rocket drawing". Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Stephenson%27s_Rocket_drawing.jpg#/media/File:Stephenson%27s_Rocket_drawing.jpg

"Circuit theory doesn't work in the *IR* etc."

Circuit theory is just Maxwell's equations

Circuits: Maxwell's equations in 0-D limit T-lines: Maxwell's equations in 1-D limit, etc.

Example: short T-line approximating an inductor

Any system of PDEs \rightarrow mesh finely into ODEs \rightarrow *equivalent circuit*

http://www5.ocn.ne.jp/

Circuit theory: alive & well at 1.0 THz

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 doi: 10.1109/LED.2015.2407193

620 GHz, 20 dB gain HBT amplifier M Seo, Teledyne, IMS 2013

Not shown: 670 GHz HBT amplifier: J. Hacker, Teledyne: IMS 2013

No question that 1 THz interconnects are challenging, but they work...

"Charge control doesn't work in the IR etc."

...we must use quantum transitions"

To double transistor bandwidth...

(gate width W_G)

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1
	-

(emitter length L_E)

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/μm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
contact resistivities	decrease 4:1

Electron device scaling & frequency limits

To double bandwidth: reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1

How fast might it be ? 5nm diameter Schottky

Assume: $T_{depl} \approx 3.5$ nm, 5nm diameter, 0.3 A/ μ m² Average velocity : $\overline{v} = (v_{Fermi} / 2) = 3.5 \cdot 10^7$ cm/s Transit time : $\tau_{transit} = T_{depl} / (v_{Fermi} / 2) = 9.6$ fs Capacitance : $C = \varepsilon A / D = 0.43$ aF Series Resistance (N^+ , contacts): $R_s = 148 \Omega$ $\rightarrow R_s C = 65$ as

Junction Resistance (degenerat e 1D transport): $R_j \approx h/2q^2 + kT/qI = 17k\Omega$ $\rightarrow R_jC = 7.5 \text{ fs}$

20-30 THz diode cutoff frequencies ?

How fast might it be ? 5nm diameter diode

Rob Maurer, Cheng-Ying Huang, Unpublished

...plasma resonance sets an upper frequency limit "

Plasma resonance ? No worries !

Plasma resonance ? No worries !

scattering frequency
$$f_{scattering} = \frac{1}{2\pi} \frac{R_{bulk}}{L_{kinetic}} = 7 \text{THz}$$

Above 7 THz, kinetic inductance increases N+/P+ layer impedances. But: contact resistances >> (N+/P+) resistances. A non-dominant resistance is increasing with frequency.

Not a serious concern until ~30THz.

...optics is fast, electronics is slow"

Transistors today

NGST Xiaobing Mei *et al*, IEEE EDL, April 2015

These made fast by *scaling* lithographic dimensions: epitaxial dimensions contact resistivities current densities

FET
25nm
~7nm
~2-4 Ω - μ m ² (both)
~1mA/µm
100 mA/µm²
and and hat for at an

Bipolar 130nm 20nm base, 100nm collector ~2 mA/μm

20-30 mA/µm²

Feasible to make these transistors (somewhat) faster.

Optics has high *carrier* frequencies: 1.3 μ m \rightarrow 230 THz

But, the per-channel *modulation* bandwidths are low.*

20~30 GHz modulation bandwidths for lasers 20~40 GHz for electro-absorbtion modulators a few ~100 GHz traveling-wave EO modulators; these are big

Terabit optical fiber systems aggregate many channels.

WDM, polarization, etc Need lots of channels \rightarrow cost

Why are optical devices slow ?

*sure, a mode-locked-laser might have a 0.5fs pulse width, but how rapidly can you impose a signal (information) on this pulse?

Optical devices are hard to scale

Optical mode size prevents scaling:

minimum I-layer thickness minimum lateral junction width maximum (P-/N-) doping (free-carrier losses)

But their carrier frequencies are high

Transistor R/C/τ limits don't apply to laser (etc) carrier frequency carrier optical field guided by dielectric waveguide AC field kept away from resistive bulk and contact regions. AC signal not coupled through electrical contacts such dielectric mode confinement hard at low frequencies

"Tubes are ancient history"
Tubes are ancient ? They still beat transistors !

We developed a 180mW , 220 GHz HBT power amplifier...

T Reed et al, CSICS 2014

... as part of a <u>driver</u> for a 20W, 220 GHz traveling-wave tube... ... for DARPA's 220 GHz radar

We develop solid-state mm-wave sources, seeking to <u>drive</u> or <u>replace</u> existing high-power tubes.

Myths about III-Vs

Heard often at IEDM (even said by some III-V MOS folk) (never at DRC):

"III-V contacts much poorer than Si"

"...can't be doped above 10¹⁸/cm³."

"...need to unpin the Fermi level under the contacts."

To double transistor bandwidth...

source via

卞

	FET parameter	change
L_{G} $(drain)$ $(drain$	gate length	decrease 2:1
	current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
	transport effective mass	constant
	channel 2DEG electron density	increase 2:1
	gate-channel capacitance density	increase 2:1
	dielectric equivalent thickness	decrease 2:1
$(\text{gate width} W_G)$	channel thickness	decrease 2:1
	channel state density	increase 2:1
\longrightarrow	contact resistivities	decrease 4:1
		1

	HBT parameter	change
	emitter & collector junction widths	decrease 4:1
	current density (mA/µm²)	increase 4:1
	current density (mA/μm)	constant
	collector depletion thickness	decrease 2:1
	base thickness	decrease 1.4:1
(emitter length L_E)	contact resistivities	decrease 4:1

III-V contacts much poorer than Si ???

For N-type, Si seems to be just a bit better Si at ~0.3 $\Omega\text{-}\mu\text{m}^2\,$, InAs at ~0.5 $\Omega\text{-}\mu\text{m}^2\,$

For P-type, Si significantly better P-SiGe:~0.15 Ω - μ m² (ZHANG et al, EDL, June 2013) P-InGaAs at ~0.5 Ω - μ m² Very strange, very persistent myth.

Easy fix: read any of 100's of papers in the literature N-type InGaAs to ~8*10¹⁹/cm³, InAs to 10²⁰/cm³, P-type InGaAs to ~2*10²⁰/cm³

Myth seems to arise from low conduction-band state density InGaAs effective state density Ns~4*10¹⁷/cm³, Surely it is not possible to dope higher than that ? ;-)

Need to unpin the contact Fermi level ???

N-InGaAs seems to have a ~0.2 eV Schottky barrier ~0.6nm depletion depth ~one lattice constant

N-InAs, or course, has a *negative* ~0.2 eV Schottky barrier with no barrier, is contact resistivity zero ??? No→ Landauer !

$$\rho_{c} = \left(\frac{\hbar}{q^{2}}\right) \cdot \left(\frac{8\pi}{3}\right)^{2/3} \cdot \frac{1}{\|T\|^{2}} \cdot \frac{1}{n^{2/3}}$$

n =carrier concentration, T =transmission coefficient

Wavefunction reflects due to mass, energy change → |T|<1 (over)simplified theory, heavily-doped InAs : |T|² ~0.3, Experimental: |T|² ~0.1

TLM Resistance, at zero spacing, is the contacts ?

That's how we all learned to characterize contacts.

But the zero-gap resistance also contains a Landauer term:

$$R_{\text{Landauer}} = \left(\frac{\hbar}{q^2}\right) \cdot \left(\frac{8\pi}{3}\right)^{2/3} \cdot \frac{1}{HW} \cdot \frac{1}{n^{2/3}}$$

n =carrier concentration,

H = epi - layer thickness

W = TLM width

Correction can be significant Contacts are better than we think UCSB's published N-InAs contact data is pessimistic

Lee et al, 2015 VLSI symposium

"III-V dielectrics are still very poor"

Are III-V dielectrics still very poor ?

Maybe not perfect. But perhaps better than one might think. Here are Susanne Stemmer's dielectrics in our FETs.

61 mV/dec Subthreshold swing at V_{DS} =0.1 V. Negligible hysteresis

BJT Myths

"...bipolar transistors are current controlled,

FETs are voltage-controlled"

Given some finite, nonzero input impedance, there's a 1-1 relationship between voltage & current...

"InP is poor for power devices: v_{sat} is only ~1.5*10⁷ cm/s"

Is the velocity low in InP ??

This is the bulk velocity-field curve

But, in InP collector, no Γ -L scattering until band energies allow it.

Typical velocities are ~3E7 cm/s.

"velocity overshoot"

Drops at higher voltages...

R_{bb} is not "base spreading resistance"

Are base-emitter heterojunctions important ?

InGaAs emitter & base

no EB heterojunction large electron degeneracy don't need heterojunction !

History

Woodall pointed it out. Ritter did the experiment. Verified !

Why do we keep the InP?

InP/InGaAs selective etch precision placement of base contact.

Position (µm)

Are DHBTs slow when saturated ?

Classic bipolar transistor saturation:

moderate minority carrier storage in base large minority carrier storage in subcollector subcollector stored charge dominates

base-collector junction blocks hole injection into collector much less saturation charge.

Circuit implications:

base-collector diodes are Schottky like Daneshgar 2014: use in fast sample-hold gates CMOS-like saturating-HBT logic

Taur et al 2015: proposed as CMOS logic replacement

HBTs have exponential I-V characteristics ????

drops $g_m \rightarrow$ hurts bandwidth

FET Myths

"Long-channel FETs are limited by mobility...

...short-channel FETs are limited by saturation drift velocity".

Mobility/saturation velocity model ???

My undergradu ate class notes

For drain voltages larger than the knee voltage :

mobility – limited current

$$I_{D,\mu} = \mu c_{ox} W_g (V_{gs} - V_{th})^2 / 2L_g$$

velocity – limited current

$$I_{D,v} = c_{ox} W_g v_{sat} (V_{gs} - V_{th})$$

Generalized Expression

$$\left(\frac{I_D}{I_{D,v}}\right)^2 + \left(\frac{I_D}{I_{D,\mu}}\right) = 1$$

This is not correct

Short-channel: Ballistic top-of-barrier model

Natori, Lundstrom, Antoniadis

If zero scattering between source and barrier: velocity set by $mv^2 = E_{electron} - E_{c,barrier}$. current= #states above barrier times velocity of each scattering in drain region: reduces f_{τ} , doesn't reduce current

Scattering near source:

drops E_f near barrier reduces current

Are FET f_{τ} 's set by transit times ?

 $1/2\pi f_{\tau} = L_g / \overline{v} + (\text{end capacitances})/g_m + \dots$

Everyone knows this.

But, the significance is not always noted.

```
End capacitances
```

about 0.3 fF/ μ m total in HEMTs about 1.0 fF/ μ m total in CMOS VLSI.

```
Impact on f_{\tau} (assuming zero gate length):

g_m=2mS/\mu m, 0.3 fF/\mu m \rightarrow f_{\tau}=1.1 THz (InP HEMT)

g_m=1mS/\mu m, 0.3 fF/\mu m \rightarrow f_{\tau}=550 GHz (GaN HEMT)

g_m=2mS/\mu m, 1.0 fF/\mu m \rightarrow f_{\tau}=320 GHz (CMOS)
```

Yet, g_m is also hard to increase (gate dielectric scaling) C_{end}/g_m time constant is major bandwidth limit.

But the roadmap says VLSI will give 1 THz f_{τ}...

They have fixed it now, but...

...one recent RF ITRS roadmap predicted:

```
f_{\tau} increases as 1/(technology note)
```

Physics-free prediction

1) gate length no longer proportional to technology node 2) $1/2\pi f_{\tau} = L_g/v + C_{ends}/g_m + ...$...some terms no longer scale.

Embellishment, fantabulism, and balderdash.

Power Transistor Gamesmanship

Quote bandwidth at a low voltage, breakdown at a high one.

For InP HBTs, f_{τ} drops with increased V_{ce} : Movement of depletion edge decrease in distance before Γ -L scattering..

For HEMTs, f_{τ} drops with increased V_{ce} : Lateral movement of gate-drain depletion edge

Gamesmanship with breakdown

How about this?

In designing PAs, such games would kill the IC.

This is how we specify our HBTs internally...

VLSI specsmanship

It's nice to have high g_m, low SS, but (I_{on}, I_{off}, V_{DD}) is better you can have low SS, but a bad leakage tail will increase I_{off}.

VLSI specmanship

A few recent papers have even done this...

VLSI specmanship

Or quote SS, gm, DIBL etc on a long-channel device Nice to look at...but the VLSI IC will use short-channel FETs...

Transistor benchmarks for circuits

Gain

How much gain can we get from a transistor ?

564

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 3, MARCH 2014

A CMOS 210-GHz Fundamental Transceiver With OOK Modulation

Zheng Wang, Student Member, IEEE, Pei-Yuan Chiang, Student Member, IEEE, Peyman Nazari, Student Member, IEEE, Chun-Cheng Wang, Member, IEEE, Zhiming Chen, Member, IEEE, and Payam Heydari, Senior Member, IEEE

Fig. 11. Maximum power gain with respect to neutralization capacitance at (a) 100 GHz and (b) 200 GHz.

How much gain can we get from a transistor ?

MSG: maximum obtainable gain, with no added feedback, If we add sufficient stabilizing resistance to ensure that no change in the generator or load can cause oscillation

U: gain if we unilateralize (add lossless reciprocal feedback) and then match.

Note that the common-base MSG is larger than U!

How much gain can we get from a transistor ?

The common-base MSG is larger than U.

What does this tell us ? Adding feedback, and then re-stabilizing can increase gain. Even if we ensure unconditional stability.

Is there any upper bound to the gain so obtained ? No!

Mason showed that U is

(1) an invariant (with respect to lossless reciprocal embedding)(2) the <u>only</u> invariant calculable from the network parameters.

→ The only limit to such design tricks is component tolerance.

Will such techniques be widely used ?

Radios need LNAs and PAs These have quite different design constraints There are few applications for RF "A's" (i.e., not LNA, not PA)
Common-base stages are less stable ????

MSG is the maximum obtainable gain

If you don't add feedback and if you ensure that termination changes won't cause oscillation

...so, in what sense is the CB stage less stable ?

Noise

We have a clean measure of noise performance

Define F_{∞} as the noise figure of an infinite cascade

$$F_{\infty} = F + \frac{F-1}{G_A} + \frac{F-1}{G_A^2} + \frac{F-1}{G_A^3} + \dots$$

Define *M* , the noise measure, as $M = F_{\infty} - 1$

M as on proves that M is invariant w.r.t lossless reciprocal embedding. Note that F_{\min} is not such an invariant.

So, the best low-noise transistor is the one with the smallest M.

Power

Does f_{max} determine PA gain ? No !

Load is different for gain and for power

MAG/MAG/U....obtained with load giving optimum gain load for maximum power is $R_{Lopt} = (V_{max}-V_{min})/I_{max}$, plus parallel L

Power gain with the optimum load match

Can calculate this from transistor model (or S_{ij}) and $R_{L,opt}$. Load-pull measures this gain.

Are super-high breakdown voltages useful ?

Suppose we have transistor with (1) $J_{\text{max}} = 1 \text{ mA}/\mu \text{m}$ (2) $V_{br} = 100 \text{ V}$. Is this useful for a 100GHz PA ?

Note: $R_L > R_{\text{max}} \approx 100\Omega$ can't be realized

Design A : Pick $W_g = 100 \,\mu \text{m}$: $I_{\text{max}} = 100 \text{mA}, V_{br} = 100 \text{ V} \rightarrow \frac{R_{L,opt}}{R_{L,opt}} = 1 \text{k}\Omega \rightarrow \text{can't match}$

Design B: pick $W_g = 1$ mm \rightarrow huge device $I_{\text{max}} = 1$ A, $V_{br} = 100$ V $\rightarrow R_{L,opt} = 100$ Ω

Are super-high breakdown voltages useful ?

Design B: pick
$$W_g = 1$$
mm \rightarrow huge device
 $I_{\text{max}} = 1$ A, $V_{br} = 100$ V $\rightarrow R_{L,opt} = 100\Omega$

Suppose $W_{finger} = 10 \,\mu\text{m}$, $D_{gg} = 10 \,\mu\text{m}$ \rightarrow need 100 fingers @10 $\,\mu\text{m}$ spacing \rightarrow Wide FET cell : $D_{cell} = 1\text{mm}$

But
$$\lambda_g \approx \lambda_0 / \varepsilon_r^{1/2} = 1.0 \text{mm} @ 94\text{GHz}$$

 $\lambda_g / 8 \approx 126 \mu \text{m}$

Our FET cell is ~ 1 wavelength wide. → Huge impedance change in feed Won't work!

Maximum useful breakdown voltage

If
$$D_{cell} > \lambda_g / 8$$
, then R_L will drop.
M aximum current per cell :
 $I_{max} = \frac{W_{finger}}{D_{gg}} \left(J_{max} \cdot \frac{\lambda_0}{8\varepsilon_{r,eff}^{1/2}} \right)$
M aximum useful voltage
 $V_{max,useful} - V_{min} = I_{max} R_{L,max}$
 $= \frac{W_{finger}}{D_{gg}} \left(J_{max} \cdot \frac{\lambda_0}{8\varepsilon_{r,eff}^{1/2}} \right) R_{L,max}$
 $= 12.6$ Volts

S

 $R_L = 100\Omega$

 $D_{cell} < \lambda_g/8$

Maximum power per cell

If $D_{cell} > \lambda_g / 8$, then R_L will drop.

Maximum current per cell :

$$I_{\max} = \frac{W_{finger}}{D_{gg}} \left(J_{\max} \cdot \frac{\lambda_0}{8\varepsilon_{r,eff}^{1/2}} \right)$$

Maximum power per cell

$$P_{\max,cell} = I_{\max}^{2} R_{L,\max} / 8$$

$$= \left(\frac{W_{finger}}{D_{gg}} J_{\max} \cdot \frac{\lambda_{0}}{8\varepsilon_{r,eff}^{1/2}}\right)^{2} \frac{R_{L,\max}}{8}$$

$$= 0.2 \text{ Watts}$$

A current-density-limit on mm-wave power

Must-Haves for Electronics

RF/microwave/mmwave devices must have...

For general RF amplification, the answer's unclear

Unilateral gain & f_{max} seem reasonable metrics. Fortunately, we always want PAs or LNAs

For low-noise RF transistors, the real metric is noise measure.

For high-power RF transistor, the metrics are maximum output power, and associated gain, into realizable load between ~10 and 100 Ω. this involves both the discussed current & voltage metrics load-pull measures this.

Logic : some desirables

Logic should perform Boolean functions NANDalone is sufficient, as is NOR AND and OR are not

Gates should Cascade

input and output in the form of the same physical variable same values defining "1" and "0"

include translation devices in speed/size/power analysis

e.g. , problem if input is DC H-field and output is 50 GHz spin wave amplitude

e.g., problem if input is DC current and output is DC B-field

e.g. , problem if input is at 2 GHz, and output is at 25 GHz (parametric gain)

Fan-out is probably needed, too

Logic Elements Should Communicate

... over significan t distances.

The bigger the gates, the longer the distances.

gates should be very small (Boolean complexity /area) bigger devices needed to drive longer interconnects - -how big ?

Rent's rule : useful chips have many long wires.

Power / Energy / Delay analyses must explicitly include interconnects.

ion / reagent concentration in solution (biology) wires gears (adding machines) optical waveguides

Logic Should Be Robust

Jan Rabaey says "Digital ICs scale, analog ICs don't"

Analog : errors accumulate Digital : levels are restored

This seems to imply nonlinearities. This seems to imply gain.

Zero power logic worries me ---- despite Landauer zero dissipation \rightarrow reversible reversible : $f(\text{time}) \Leftrightarrow f(-1 \cdot \text{time})$ a) do we lose input/output cause / effect distinction ? b) do small deviations accumulate --exponentially ? Second Part

Short course, Device Research Conference, June 21, 2015: "Device Fundamentals You Were Never Taught: Interpreting Your Device Data"

Battling to make good electron devices

Mark Rodwell, University of California, Santa Barbara C.-Y. Huang, J. Rode, S. Lee, V. Chobpattanna, P. Choudhary, A.C. Gossard, S. Stemmer ECE and Materials Departments, University of California, Santa Barbara

P. Long, E. Wilson, M. Povolotskyi, G. Klimeck Network for Computational Nanotechnology, Purdue University

M. Urteaga, J. Hacker, M. Seo, Z. Griffith, M. Fields, B. Brar Teledyne Scientific and Imaging *Now Sunkyunkwan University.*

RF, Fast Digital Performance Figures of Merit

nm Transistors, Far-Infrared Integrated Circuits

IR today \rightarrow lasers & bolometers \rightarrow generate & detect

Far-infrared ICs: classic device physics, classic circuit design

It's all about the interfaces: contact and gate dielectrics...

...wire resistance,...

...heat,...

band structure and density of states !

Transistor figures of Merit / Cutoff Frequencies

*H*₂₁=short-circuit current gain

MAG = maximum available power gain: impedance-matched

match

load

match

generator

freq, Hz

What Determines Gate Delay ?

Gate Delay Determined by:

Depletion capacitance charging through the logic swing

$$\left(\frac{\Delta V_{LOGIC}}{I_{C}}\right) (C_{cb} + C_{be,depletion})$$

Depletion cap acitance charging through the base resistance $R_{bb}(C_{cbi} + C_{be,depletion})$ Supplyingbase + collector stored charge

through the base resistance

$$R_{\rm bb} (\tau_b + \tau_c) \left(\frac{I_C}{\Delta V_{\rm LOGIC}} \right)$$

The logic swing must be at least

$$\Delta V_{LOGIC} > 4 \cdot \left(\frac{kT}{q} + R_{ex}I_{c}\right)$$

 $(\tau_b + \tau_c)$ typically 10 - 25% of total delay;

Delay not well correlated with f_{τ}

$$(\Delta V_{LOGIC} / I_C) (C_{cb} + C_{be,depl})$$
 is 55% - 80% of total.

High (I_C / C_{cb}) is a key HBT design objective. $J_{\max,Kirk} = 2\varepsilon \overline{v}_{electron} (V_{ce, \text{operating}} + V_{ce, \text{full depletion}}) / T_c^2$ $\Rightarrow \frac{C_{cb} \Delta V_{LOGIC}}{I_C} = \frac{\Delta V_{LOGIC}}{2V_{CE,\text{min}}} \left(\frac{A_{\text{collector}}}{A_{\text{emitter}}}\right) \left(\frac{T_C}{2\overline{v}_{electron}}\right)$ $R_{ex} \text{ must be very low for low } \Delta V_{\text{logic}} \text{ at high } J$

HBT Design For Digital & Mixed-Signal Performance

from charge-control analysis:

$$\begin{split} T_{gate} &\approx (\Delta V_L / I_C) (C_{je} + 6C_{cbx} + 6C_{cbi}) + \tau_f \\ &+ (kT / qI_C) (0.5C_{je} + C_{cbx} + C_{cbi} + 0.5\tau_f I_C / \Delta V_L) \\ &+ R_{ex} (0.5C_{cbx} + 0.5C_{cbi} + 0.5\tau_f I_C / \Delta V_L) \\ &+ R_{bb} (0.5C_{je} + C_{cbi} + 0.5\tau_f I_C / \Delta V_L). \end{split}$$

analog ICs have similar bandwidth constraints...

Electron Device Design

Transistor scaling laws: (V,I,R,C,t) vs. geometry

Available quantum states to carry current

contact terms dominate

area=A

 $R \cong \rho_{contact} / A$

N

97

THz & nm Transistors: State Density Limits

of available quantum states / energy determines FET channel capacitance FET and bipolar transistor current access resistance of Ohmic contact

Refractory Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm / Performance sufficient for 32 nm /2.8 THz node.

Why no ~2THz HBTs today ? Problem: reproducing these base contacts in full HBT process flow

Refractory Contacts to In(Ga)As

Refractory Contacts to In(Ga)As

Bipolar Transistors

$$R_{ex} = \rho_{\text{contact}} / A_e$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Scaling Laws, Scaling Roadmap

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

		-	
64	32	16	nm
64	32	16	nm
2	1	0.5	Ω- μ m ²
18	15	13	nm
60	30	15	nm
2.5	1.25	0.63	Ω- μ m ²
180	90	45	nm
53	37.5	26	nm
36	72	140	$mA/\mu m^2$
1.0	1.4	2.0	THz
2.0	2.8	4.0	THz
	64 64 2 18 60 2.5 180 53 36 1.0 2.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Can we make a 2 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C_{cb}/I_c \rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	$f_{ au}$ $f_{ ext{max}}$	1000 2000	1000 2000	GHz GHz
-	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions $_{106}$

To double transistor bandwidth...

(emitter length L_E)

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

nearly constant junction temperature \rightarrow linewidths vary as (1 / bandwidth)²

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

Energy-limited vs. field-limited breakdown

band-band tunneling: base bandgap impact ionization: collector bandgap
THz InP HBTs: Performance @ 130 nm Node

Teledyne: M. Urteaga et al: 2011 DRC

Refractory Emitter Contacts

Мо

negligible penetration

Blanket Base Metal Process

Parasitics along length of HBT emitter

Base pad & feed increases C_{cb}

Emitter undercutactual junction shorter than drawn. \rightarrow excess C_{cb} , excess base metal resistance

Base metal resistance adds to R_{bb}

all these factors decrease f_{max}

Field-Effect Transistorsfor RF

HEMTs: Key Device for Low Noise Figure

2:1 to 4:1 increase in $f_{\tau} \rightarrow$ greatly improved noise @ 200-670 GHz. Better range in sub-mm-wave systems; or use smaller power amps. Critical: Also enables THz systems beyond 820 GHz

Field-Effect Transistor Scaling Laws

FET parameter	change
gate length	decrease 2:1
current density (mA/µm), g _m (mS/µm)	increase 2:1
transport effective mass	constant
channel 2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

Field-Effect Transistors No Longer Scale Properly

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{fringe}/g_m$ prevents f_{τ} scaling. Shorter gate lengths degrade electrostatics \rightarrow reduced g_m/G_{ds}

Scaling roadmap for InP HEMTs

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

Field-Effect Transistorsfor logic

What goals for logic FETs ?

<u>Low off-state current</u> (nA to pA/ μ m) for <u>low static dissipation</u> \rightarrow minimum subthreshold slope \rightarrow minimum L_g / T_{ox} low gate tunneling, low band-band tunneling

<u>Low delay</u> $C_{FET} \Delta V/I_d$ <u>in gates where</u> transistor capacitances dominate.

Parasitic capacitances are 0.5-1.0 fF/ μ m \rightarrow low C , high I_d

<u>Low delay</u> $C_{wire} \Delta V/I_d$ <u>in gates where</u> wiring capacitances dominate.

 \rightarrow need high I_d / W_g

and small !

nm/VLSI MOSFET Scaling: Ideal and Feasible

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1

nm/VLSI MOSFET Scaling: Ideal and Feasible

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1

nm/VLSI MOSFET Scaling: Goals

FET parameter	
gate length	8 nm
current density (mA/mm)	1 mA/µm @0.5V
transport mass	
2DEG electron density	3*10 ¹² /cm ²
gate-channel capacitance density	
dielectric equivalent thickness	0.4 nm (0.8 nm fin)
channel thickness	2 nm (4 nm fin)
channel state density	
contact resistivities	0.3 Ω-μm²

Minimum Dielectric Thickness & Gate Leakage

Attenuation coefficient:

$$\alpha \cong \frac{\sqrt{2m * E_{\text{barrier}}}}{\hbar}$$

Transmission Probability (WKB approximation)

 $P \cong \exp(-2\alpha T_{\text{barrier}})$

450

AIAs

2170

500

450

InGaAs

760

200

GaAs

1420

550

1350 AISb

InAs

360 150

GaSb

770

InSb

220

1550

arriel

Aspect ratio and subthreshold swing

Contact Resistance Scaling

 T_{body}

EET naramator

I I IIII Nõue	
~10 nm	
1 mA/μm @0.5V	
3*10 ¹² /cm ²	
0.5 nm (fin: 1.0 nm)	
2.5 nm (fin: 5 nm)	
0.4 Ω-μm²	

22 mm Mada

With the above #s, contacts degrade on-current by ~15%

A 2.4 Ω - μ m² contact would reduce the current 2:1

Mobility in Thin Channels: Surface Roughness Scattering

Mobility is high if surfaces are smooth

JOURNAL OF APPLIED PHYSICS 115, 123711 (2014)

Two dimensional electron transport in modulation-doped $In_{0.53}Ga_{0.47}As/AIAs_{0.56}Sb_{0.44}$ ultrathin quantum wells

FIG. 4. Measured low temperature (45 K) and room temperature (300 K) mobilities of InGaAs/InAlAs and InGaAs/AlAsSb 2DEGs as a function of the InGaAs well thickness.

Quantum well: smooth surfaces

FET: rough surfaces

— low-K dielectric spacer

high-K gate dielectric

Terms in gate-channel capacitance

Calculating Current in Ballistic Limit

$$\Rightarrow J = \left(84 \frac{\text{mA}}{\mu \text{m}}\right) \frac{g \cdot (m^*/m_o)^{1/2}}{\left(1 + (c_{dos,o}/c_{ox}) \cdot g \cdot (m^*/m_o)\right)^{3/2}} \left(\frac{V_{gs} - V_{th}}{1 \text{ V}}\right)^{3/2}$$

Drive current versus mass, # valleys, and EOT

InGaAs MOSFETs: superior I_d to Si at large EOT. InGaAs MOSFETs: inferior I_d to Si at small EOT. <u>III-V vs. Si:</u> Low m*→ higher velocity. Fewer states→ less scattering → higher current. Can then trade for lower voltage or smaller FETs.

<u>Problems</u>: Low $m^* \rightarrow$ less charge. Low $m^* \rightarrow$ more S/D tunneling. Narrow bandgap \rightarrow more band-band tunneling, impact ionization.

InGaAs/InAs FETs are leaky!

HP = High Performance: I_{off} =100 nA/µm GP = General Purpose: I_{off} =1 nA/µm LP = Low Power: I_{off} =30 pA/µm ULP = Ultra Low Power: I_{off} =10 pA/µm

III-V MOSFET

Courtesy of S. Kraemer (UCSB)

*Heavy elements look brighter

Lee et al., 2014 VSLI Symposium

III-V MOSFET

N÷ AION/ZrO₂ InGaAs Ni InP InGaAs/InAs InAlAs

- 1 5 nm

Huang et al., 2015 DRC

Courtesy of S. Kraemer (UCSB)

Reducing leakage: Ultra-thin channel

On-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

Wrap-Up

Small dimensions

Thin semiconductor layers (2-3nm)

Extremely low resistance contacts

High current densities

Very thin dielectrics

Available semiconductor states (III-Vs)

Resistances in interconnects and electrodes

Where lies the future of electronics ?

"End of the scaling roadmap" "More than Moore"

tubes

bipolar transistors

field-effect transistors

electrostatic barrier

Time for a new approach ?

Gravitonics ? Quarkonics ? Neutrinonics ?

Mechanics ? 1000's of heavy Nuclei ...

Magnetics ? $F \sim v_1 v_2 / c^2 \rightarrow weak!$

Charge-control: fundamentally best

electrons are light electrostatic force: strong & long-range electromagnetic waves: strong, long-range → electromagnetic interconnects (wires !) are best: efficient, dense

The future of electronics:

classic charge-control devices few-nm dimensions, 10¹²-scale integration multi-THz bandwidths (backup slides follow)