Transistors for VLSI, for Wireless: A View Forwards Through Fog

Mark Rodwell, UCSB

Low-voltage devices

P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue

*III-V MOS*C.-Y. Huang, S. Lee*, A.C. Gossard,
V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB

InP HBT:

J. Rode**, P. Choudhary, A.C. Gossard, B. Thibeault, W. Mitchell: **UCSB** M. Urteaga, B. Brar: **Teledyne Scientific and Imaging**

Now with: *IBM, **Intel

Co-authors

In(Ga)As MOS

Cheng-Ying Huang

Sanghoon Lee

Varista Chobpattanna

Prof. Susanne Stemmer

THz InP HBT-

Johann Rode

Prateek Choudhary

Steep FET design

Pengyu Long

Evan Wilson

Prof. Michael

Povolotski

Prof. Gerhard Klimeck

III-V EPI— Process

Prof. Art Gossard

Thibeault

Bill Mitchell

...and at Teledyne (HBT): Miguel Urteaga, Bobby Brar

Transistors approaching scaling limits

Process technology: it's getting hard. extreme resolution, complex process, many steps exhausted students

How can we steer the future of VLSI, of wireless ?

Beyond yet another new semiconductor (be it 3D or 2...) **Iet's explore other options.**

VLSI

What does VLSI need ?

First: Steep-subthreshold-swing transistors

Characteristics steeper than thermal \rightarrow lower supply voltage

Tunnel FETs: truncating the thermal distribution

Tunnel FETs: are prospects good ?

Useful devices must be small

Quantization shifts band edges→ tunnel barrier

Band nonparabolicity increases carrier masses

Electrostatics: bands bend in source & channel

What actual on-current might we expect ?

Tunneling Probability

Transmission Probability (WKB, square barrier)

 $P \cong \exp(-2\alpha T_{\text{barrier}}), \text{ where } \alpha \cong \frac{\sqrt{2m^* E_{\text{barrier}}}}{\hbar}$

Assume: $m^* = 0.06 \cdot m_0$, $E_b = 0.2 \text{ eV}$

Then:

 $P \cong 33\%$ for a 1nm thick barrier

 $\cong 10\%$ for a 2nm thick barrier

 $\cong 1\%$ for a 4nm thick barrier

For high I_{on}, tunnel barrier must be *very* thin.

~3-4nm minimum barrier thickness: P+ doping, body & dielectric thicknesses

T-FET on-currents are low, T-FET logic is slow

NEMO simulation:

GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ ε_r =12, 12nm L_q

Resonant-enhanced tunnel FET Avci & Young, (Intel) 2013 IEDM

Figure 16 I-V curves for Lg=9nm NW R-TFET, Het-j TFET and MOSFET. R-TFET has 100x higher Ideat than MOSFET at VDD=0.27V. (Ioff=10pA/um, Vds=0.3V)

2nd barrier: bound state

dI/dV peaks as state aligns with source

improved subthreshold swing.

Can we also increase the on-current?

Electron anti-reflection coatings

Tunnel barrier:

transmission coefficient < 100% reflection coefficient > 0% want: 100% transmission, zero reflection familiar problem

Optical coatings reflection from lens surface quarter-wave coating, appropriate *n* reflections cancel

Microwave impedance-matching reflection from load quarter-wave impedance-match no reflection Smith chart.

T-FET: single-reflector AR coating

Peak transmission approaches 100%

Narrow transmission peak; limits on-current

Can we do better?

Limits to impedance-matching bandwidth

Yes! Schrödinger's equation is isomorphic to E&M plane wave. Khondker, Khan, Anwar, JAP, May 1988 T-FET design → microwave impedance-matching problem Fano: limits energy range of high transmission Design T-FETs using Smith chart, optimize using filter theory Working on this: for now design by random search

* $E/h \leftrightarrow f, \phi \leftrightarrow V, \psi \leftrightarrow I$, probability current \leftrightarrow power, where $\phi(x) = (\hbar/jm^*)(\partial \psi/\partial x)_{14}$

T-FET with 3-layer antireflection coating

Interim result; still working on design

Source superlattice: truncates thermal distribution

Proposed 1D/nanowire device:

M. Bjoerk et al., U.S. Patent 8,129,763, 2012. E. Gnani et al., 2010 ESSDERC

Planar (vs. nanowire) superlattice steep FET

Planar superlattice FET

superlattice by ALE regrowth easier to build than nanowire (?)

Performance (simulations):

~100% transmission in miniband. 0.4 mA/µm I_{on} , 0.1µA/µm I_{off} ,0.2V

Ease of fabrication ? Tolerances in SL growth ? Effect of scattering ?

What if steep FETs prove not viable ?

Steep FETs will not be easy.

Instead, increase *dI/dV* above threshold.

dI/dV: a.k.a. transconductance, g_m . Reduced voltage, reduced CV²

First: III-V MOS as (potential) high-(dI/dV) device

Why III-V MOS ?

<u>III-V vs. Si:</u> Low $m^* \rightarrow$ higher velocity. Fewer states \rightarrow less scattering \rightarrow higher current. Then trade for lower voltage or smaller FETs.

<u>Problems</u>: Low $m^* \rightarrow$ less charge. Low $m^* \rightarrow$ more S/D tunneling. Narrow bandgap \rightarrow more band-band tunneling, impact ionization.

In(Ga)As: low $m^* \rightarrow$ high velocity \rightarrow high current (?)

Ballistic on-current:

Natori, Lundstrom, Antoniadis (Rodwell)

$$J = \frac{K_{1}}{K_{1}} \cdot \left(84 \frac{\text{mA}}{\mu \text{m}}\right) \cdot \left(\frac{V_{gs} - V_{th}}{1 \text{ V}}\right)^{3/2}, \qquad \frac{1}{c_{equiv}} = \frac{T_{ox}}{\varepsilon_{ox}} + \frac{T_{channel}}{2\varepsilon_{semicondudor}}$$
$$\frac{g \cdot \left(m^{*}/m_{o}\right)^{1/2}}{\left(1 + (c_{dos,o} / c_{equiv}) \cdot g \cdot (m^{*} / m_{o})\right)^{3/2}}$$

More current unless dielectric, and body, are extremely thin.

Excellent III-V gate dielectrics

61 mV/dec Subthreshold swing at V_{DS}=0.1 V Negligible hysteresis

Record III-V MOS

Double-heterojunction MOS: 60 pA/ μ m leakage

- Minimum $I_{off} \sim 60 \text{ pA/}\mu\text{m}$ at $V_D = 0.5 \text{V}$ for $L_g 30 \text{ nm}$
- 100:1 smaller I_{off} compared to InGaAs spacer
- BTBT leakage suppressed → isolation leakage dominates

Huang *et al.,* this conference Courtesy of S. Kraemer (UCSB)

III-V MOS

(a) $L_g = ???$

InP spacer

N+ InP

N+ InGaAs

InAlAs Barrier

⊣5 nm

High-current III-V PMOS

Silicon PMOS: Wang *et al.*, IEEE TED 2006 (Intel) III-V: S. Mehrotra (Purdue), unpublished

nm thickness [110]-oriented PMOS channels \rightarrow low transport mass

Very low m* Current approaching NMOS finFETs are naturally [110]

Minimum Dielectric Thickness & Gate Leakage

Thin dielectrics are leaky Transmission Probability $P \cong \exp(-2\alpha T_{\text{barrier}})$, where $\alpha \cong \hbar^{-1} \sqrt{2m^* E_{\text{barrier}}}$

→ 0.5-0.7nm minimum EOT constrains on-current electrostatics degrades with scaling → fins, nanowires

Quick check: scaling limits

finFET: 5 nm physical gate length.

Channel: <100> Si, 0.5, 1, or 2nm thick **dielectric:** ε_r =12.7, 0.5 or 0.7 nm EOT

Given EOT limits, ~1.5-2nm body is acceptable.

Source-drain tunneling often dominates leakage.

Do 2-D semiconductors help ?

3D: Is body thickness a scaling limit ? recall the previous slide

If oxides won't scale, we must make fins with 2D, can we make fins ? later, will need to make nanowires...

Ballistic drive currents don't win either high m*, and/or high DOS mobility sufficient for ballistic ?

$$J = K \cdot \left(84 \frac{\text{mA}}{\mu \text{m}} \right) \cdot \left(\frac{V_{gs} - V_{th}}{1 \text{ V}} \right)^{3/2},$$

where $K = \frac{g \cdot (m_{\perp}^{1/2} / m_o^{1/2})}{\left(1 + (c_{dos,o} / c_{equiv}) \cdot g \cdot (m_{\perp}^{1/2} m_{\parallel}^{1/2} / m_o) \right)^{3/2}}$

When it gets crowded, build vertically

Los Angeles: sprawl

2-D integration: wire length α # gates^{1/2}

LA is interconnect-limited

Chip stacking (skip)
 3D transistor integration

Manhattan: dense

3-D integration: wire length \propto #gates^{1/3}

Corrugated surface \rightarrow more surface per die area

Corrugated surface \rightarrow more current per unit area

$3D \rightarrow shorter wires \rightarrow less capacitance \rightarrow less CV^2$

All three have same drive current, same gate width

Tall fin, "4-D": smaller footprint \rightarrow shorter wires

Corrugation: same current, less voltage, less CV²

Industry is moving to taller fins.

Transistor Fin Improvement

22 nm 1st Generation Tri-gate Transistor

Source: Intel.

14 nm 2nd Generation Tri-gate Transistor

Fixing source-drain tunneling by increasing mass ?

S

Source-drain tunneling leakage:

$$I_{off} \cong \exp(-2\alpha L_g)$$
, where $\alpha \cong \hbar^{-1} \sqrt{2m^*(qV_{th})}$

Fix by increasing effective mass?

 $\alpha L_g = \text{constant} \rightarrow m^* \propto 1/L_g^2$

This will decrease the on-current:

Fixing source-drain tunneling by corrugation

Transport distance > gate footprint length Only small capacitance increase

RF/Wireless

mm-Waves: high-capacity mobile communications

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

wide, useful bandwidths from 60 to ~300 GHz

Needs→ *research*:

<u>RF front end:</u> phased array ICs, high-power transmitters, low-noise receivers

IF/baseband: ICs for multi-beam beamforming, for ISI/multipath suppression, ...

mm-Wave CMOS won't scale much further

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

Shorter gates give no less capacitance dominated by ends; ~1fF/µm total

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi: GaAs PAs, LNAs

mm-wave links need high transmit power, low receiver noise

0.47 W @86GHz

H Park, UCSB, IMS 2014

0.18 W @220GHz T Reed, UCSB, CSICS 2013

1.9mW @585GHz

M Seo, TSC, IMS 2013

Making faster bipolar transistors

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change	
emitter & collector junction widths	decrease 4:1	
current density (mA/µm ²)	increase 4:1	
current density (mA/µm)	constant	
collector depletion thickness	decrease 2:1	
base thickness	decrease 1.4:1	
emitter & base contact resistivities	decrease 4:1	

Teledyne: M. Urteaga et al: 2011 DRC

THz HBTs: The key challenges

Obtaining good base contacts

in full HBT process flow (vs. in TLM structure)

RC parasitics along finger length

metal resistance, excess junction areas

THz InP HBTs

blanket Pt/Ru base contacts: resist-free, cleaner surface → lower resistivity

THz HEMTs: one more scaling generation ?

First Demonstration of Amplification at 1 THz Using 25nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 doi: 10.1109/LED.2015.2407193

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	0.08	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

nm & THz electronics

Electron devices: What's next?

Problems:

oxide, S/D tunneling

Why transistors are best:

Opportunities:

(backup slides follow)