Prospects for Multi-THz III-V Transistors

Mark Rodwell, UCSB

J. Rode*, P. Choudhary*, B. Thibeault, W. Mitchell, A.C. Gossard : **UCSB** M. Urteaga, J. Hacker, Z. Griffith, B. Brar: **Teledyne Scientific and Imaging**

M. Seo: Sungkyunkwan University

* Now with Intel

Workshop, WFH, "Microwave and Photonics Techniques for Terahertz Applications in Science and Technology", IEEE-IMS Symposium, May 27, 2016, San Francisco

Workshop I.D. – WFH

Why mm-wave wireless ?

Links

mm-Waves: high-capacity mobile communications

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

60 GHz, 1 Tb/s Spatially-Multiplexed Base Station

128 users/face, 512 total users, each beam 2Gb/s

Needs→ *research*:

<u>RF front end</u>: phased array ICs, high-power transmitters, low-noise receivers <u>IF/baseband</u>: ICs for multi-beam beamforming, for ISI/multipath suppression, ...

mm-Waves: benefits & challenges

Need phased arrays (overcome high attenuation)

(note high attenuation in foul weather)

mm-Wave LOS MIMO: multi-channel for high capacity

#channels \propto (aperturearea)²/(wavelength · distance)²

Torklinson : 2006 Allerton Conference Sheldon : 2010 IEEE APS-URSI Torklinson : 2011 IEEE Trans Wireless Comm.

Spatial Multiplexing: massive capacity RF networks

multiple independent beams
each carrying different data
each independently aimed
beams = # array elements

Hardware: multi-beam phased array ICs

Millimeter-wave imaging

10,000-pixel, 94GHz imaging array→ 10,000 elements

Demonstrated:

SiGe, 1.3 kW (UCSD/Rebeiz)

Lower-power designs: InP, CMOS, SiGe (UCSB, UCSD, Virginia Poly.)

235 GHz video-rate synthetic aperture radar

1 transmitter, 1 receiver 100,000 pixels 20 Hz refresh rate 5 cm resolution @ 1km 50 Watt transmitter (tube, solid-state driver)

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

Realistic packaging loss, operating & design margins

PAs: 24 dBm P_{sat} (per element)→ GaN or InP LNAs: 4 dB noise figure → InP HEMT

340GHz, 160Gb/s spatially multiplexed backhaul

1° beamwidth; 8° beamsteering 600 meters range in 50 mm/hr rain Realistic packaging loss, operating & design margins PAs: 14 dBm P_{sat} (per element)→ InP LNAs: 7 dB noise figure → InP HEMT

Optimum array size for low system power

50-500 GHz Wireless Transceiver Architecture

III-V LNAs, III-V PAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

High-gain antenna → large area → much too big for monolithic integration

Transistors

mm-wave CMOS (examples)

210 GHz amplifier: 32 nm SOI, positive feedback, 15 dB, 3 stages

150 GHz amplifier: 65 nm bulk CMOS, 8.2 dB, 3 stages (250GHz f_{max}) Seo et al. (UCSB), JSSC, December 2009

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/µm total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi: GaAs PAs, LNAs

mm-wave links need high transmit power, low receiver noise

0.47 W @86GHz

H Park, UCSB, IMS 2014

0.18 W @220GHz T Reed, UCSB, CSICS 2013

1.9mW @585GHz M Seo, TSC, IMS 2013

Scaling Laws, Scaling Roadmap

HBT parameterchangeemitter & collector junction widthsdecrease 4:1current density (mA/μm²)increase 4:1current density (mA/μm)constantcollector depletion thicknessdecrease 2:1base thicknessdecrease 1.4:1emitter & base contact resistivitiesdecrease 4:1

Scaling Node	64	32	16	nm
Emitter Width	64	32	16	nm
Resistivity	2	1	0.5	Ω- μ m ²
Base Thickness	18	15	13	nm
Contact width	60	30	15	nm
Contact p	2.5	1.25	0.63	Ω- μ m ²
Collector Width	180	90	45	nm
Thickness	53	37.5	26	nm
Current Density	36	72	140	$mA/\mu m^2$
f_{τ}	1.0	1.4	2.0	THz
$f_{\rm max}$	2.0	2.8	4.0	THz

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

$$R_{ex} = \rho_{\text{contact}} / A_e$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$R_{DS} \approx L_g / (W_g v \varepsilon)$$
 $R_S = R_D = \frac{\rho_{\text{contact}}}{L_{\text{S/D}} W_g}$

THz HBTs: The key challenges

Obtaining good base contacts

in HBT vs. in contact test structure (emitter contacts are fine)

RC parasitics along finger length

metal resistance, excess junction areas

Emitter Length Effects: Decreased f_{max}

On a 2 μ m emitter finger, effect of base metal resistance can be comparable to adding 3 Ω - μ m² to the base contact resistivity !

THz HBTs: double base metal process

Blanket surface clean (UV O₃ / HCl)

strips organics, process residues, surface oxides

Blanket base metal

no photoresist; no organic residuesRu refractory diffusion barrier2 nm Pt : penetrates residual oxides

Thick Ti/Au base pad metal liftoff thick metal \rightarrow low resistivity

Reducing Emitter Length Effects

before

after

small base post undercut

small emitter end undercut

Reducing Emitter Length Effects

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

Rode et al., IEEE TED, Aug. 2015

130nm /1.1 THz InP HBT: ICs to 670 GHz

614 GHz fundamental VCO M. Seo, TSC / UCSB

620 GHz, 20 dB gain amplifier

M Seo, TSC IMS 2013 also: 670GHz amplifier J. Hacker, TSC IMS 2013 (not shown)

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL ^{M. Seo, TSC}

IMS 2011

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

Integrated 300/350GHz Receivers: LNA/Mixer/VCO M. Seo TSC

220 GHz 180 mW power amplifier T. Reed, UCSB CSICS 2013

81 GHz 470 mW power amplifier H-C Park UCSB IMS 2014

600 GHz Integrated Transmitter PLL + Mixer M. Seo TSC

Towards a 3 THz InP Bipolar Transistor

Extreme base doping \rightarrow low-resistivity contacts \rightarrow high f_{max} Extreme base doping \rightarrow fast Auger (NP²) recombination \rightarrow low β . Solution: very strong base compositional grading \rightarrow high β

Towards a 3 THz InP Bipolar Transistor

ALD metal process: form 32 nm emitter contact

Extreme base grading (alloy, bandgap) high surface doping: good contacts, low β extreme grading→ recovers β

First Step: the ALE-defined Emitter

1/2-THz SiGe HBTs

500 GHz f_{max} SiGe HBTs Heinemann et al. (IHP), 2010 IEDM

16-element multiplier array @ 500GHz (1 mW total output) U. Pfeiffer et. al. (Wuppertal / IHP) , 2014 ISSCC

Towards a 2 THz SiGe Bipolar Transistor

		InP	SiGe	
InP· 3·1 higher collector velocity	emitter			
SiGe: good contacts, buried oxides	junction width	64	18	nm
	access resistivity	2	0.6	Ω – μ m ²
	base			
Key distinction: Breakdown InP has: thicker collector at same f	contact width	64	18	nm
	contact resistivity	2.5	0.7	Ω – μ m ²
wider collector bandgap	collector			
	thickness	53	15	nm
Key requirements:	current density	36	125	mA/µm²
low resistivity Ohmic contacts note the high current densities	breakdown	2.75	1.3?	V
	Γ _τ	1000	1000	GHz
	f _{max}	2000	2000	GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

Towards at 2.5 THz HEMT

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

FET scaling laws; 2:1 higher bandwidth	change	
gate length	decrease 2:1	
current density (mA/mm), g _m (mS/mm)	increase 2:1	
transport mass	constant	
gate-channel capacitance density	increase 2:1	
contact resistivities	decrease 4:1	

Need thinner dielectrics, better contacts

FET Scaling Laws (these now broken)

FET parameter	change	
gate length	decrease 2:1	
current density (mA/mm)	increase 2:1	
transport mass	constant	
2DEG electron density	increase 2:1	
gate-channel capacitance density	increase 2:1	
dielectric equivalent thickness	decrease 2:1	
channel thickness	decrease 2:1	
channel state density	increase 2:1	
contact resistivities	decrease 4:1	

fringing capacitance does not scale \rightarrow linewidths scale as (1 / bandwidth)

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

Record III-V MOS

Excellent III-V gate dielectrics

61 mV/dec Subthreshold swing at V_{DS}=0.1 V Negligible hysteresis

III-V MOS

(a) $L_g = ???$

InAlAs

Barrier

N+ InP

N+ InGaAs

12nm

8nm

- 15 nm

Towards at 2.5 THz HEMT

VLSI III-V MOS

THz III-V MOS

gate length	36	18	9	nm
EOT	0.8	0.4	0.2	nm
well thickness	5.6	2.8	1.4	nm
effective mass	0.05	80.0	0.08	times m ₀
# bands	1	1	1	
S/D resistivity	150	74	37	Ω-µm
extrinisic g_m	2.5	4.2	6.4	mS/µm
on-current	0.55	0.8	1.1	mA/µm
f_{τ}	0.70	1.2	2.0	THz
$f_{\rm max}$	0.81	1.4	2.7	THz

Power Amplifiers

220 GHz power amplifiers; 256nm InP HBT

90 mW

164 mW, 0.43 W/mm, 2.4% PAE

180 mW (330 mW design; thermally limited)

T. Reed (UCSB), Z. Griffith (TSC), IEEE CSIC 2012 & 2013; Teledyne 256nm InP HBT

mm-Wave Power Amplifier: Challenges

Goal: efficient, compact mm-wave power-combiners

Parallel Power-Combining

Output power: $P_{OUT} = \mathbf{N} \times \mathbf{V} \times \mathbf{I}$ Parallel connection increases P_{OUT}

Load Impedance: $Z_{OPT} = V / (N \times I)$ Parallel connection decreases $Z_{opt} \times$

High
$$P_{OUT} \rightarrow Low Z_{opt}$$

Needs impedance transformation: lumped lines, Wilkinson, ...

High insertion loss X Small bandwidth Large die area

Series Power-Combining & Stacks

Parallel connections: $I_{out}=N \times I$ **Series** connections: $V_{out}=N \times V$

Output power: $P_{out} = N^2 \times V \times I$ Load impedance: $Z_{opt} = V/I$ Small or zero power-combining losses Small die area How do we drive the gates ?

Local voltage feedback:

drives gates, sets voltage distribution

Design challenge:

need uniform RF voltage distribution need ~unity RF current gain per element

...needed for simultaneous compression of all FETs.

Sub- $\lambda/4$ Baluns for Series Combining

Balun combiner: 2:1 series connection each source sees 25 Ω \rightarrow 4:1 increased P_{out}

Standard $\lambda/4$ balun : long lines \rightarrow high losses \checkmark \rightarrow large die \checkmark

Sub- $\lambda/4$ balun : stub \rightarrow inductive tunes transistor C_{out} ! short lines \rightarrow low losses short lines \rightarrow small die

2:1 series-connected 86GHz power amplifier

20 dB Gain 188mW P_{sat} 1.96 W/mm 32.8% PAE Teledyne 250 nm InP HBT 2 stages, 1.0 mm²

4:1 series-connected 81GHz power amplifier

Park et al., 2014 IEEE-IMS

17 dB Gain 470 mW P_{sat} 23% PAE Teledyne 250 nm InP HBT 2 stages, 1.0 mm²(incl pads)

Teledyne: 1.9 mW, 585 GHz Power Amplifier M. Seo *et al.*, Teledyne Scientific: IMS2013

- •12-Stage Common-base
- •2.8 dBm P_{sat}
- •>20 dB gain up to 620 GHz

Chart 47

What limits output power in sub-mm-wave amplifiers ?

Sub-mm-wave PAs: need more current !

3 μm max emitter length (> 1 THz f_{max}) 2 mA/μm max current density I_{max}= 6 mA

Maximum 3 Volt p-p output

Load: $3V/6mA = 500 \Omega$

Combiner cannot provide 500 arOmega loading

Multi-finger HBTs: more current, lower f_{max}

More current

 \rightarrow lower cell load resistance

Reduced f_{max}, reduced RF gain: common-lead inductance $\rightarrow Z_{12}$ feedback capacitance $\rightarrow Y_{12}$ phase imbalance between fingers.

Worse at higher frequencies: less tolerant of cell parasitics less current per cell higher required load resistance Can optimum load be reached ?

two-finger power cell

Sub-mm-wave transistors: need more current

InP HBTs:

thinner collector → more current hotter → improve heat-sinking or: longer emitters → thicker base metal

GaN HEMTs:

much higher voltage 100+ GHz: large multi-finger FETs not feasible *Need high current to exploit high voltage*.

Example:

2mA/ μ m, 100 μ m max gate width, 50 Volts 200mA maximum current 50 Volts/200mA= 250 Ω load \rightarrow unrealizable.

Need more mA/µm or longer fingers

50-500GHz Wireless

50-500 GHz Wireless Electronics

Mobile communication @ 2Gb/s per user, 1 Tb/s per base station

Requires: large arrays, complex signal processing, high P_{out}, low F_{min}

III-V Transistors may perform well enough even for 1 THz systems.

(backup slides follow)