Short Course: Device Research Conference, June 23, 2019, University of Michigan

Beyond 5G: 100-340GHz Transistor, IC, and System Design

Mark Rodwell, University of California, Santa Barbara

JUMP ComSenTer: Wireless Research

ComSenTer COMMUNICATIONS SENSING TERAHERTZ

Center for Converged Communications & Sensing at THz.

Duration: 5-years; 1/2018-12/2022.

Funding: about \$36 million total.

Team: 21 Professors, ~65 Ph.D. students

Sponsors: SRC, DARPA

Focus:

wireless systems, 10-15 years out, 100-340GHz

Wireless above 100GHz

Wireless networks: exploding demand.

Immediate industry response: 5G.

28, 38, 57-71(WiGig), 71-86GHz increased spectrum, extensive beamforming

Next generation (6G ??): above 100GHz..

greatly increased spectrum, massive spectral multiplexing

DOD applications: Imaging/sensing/radar, comms.

140-340GHz Wireless

10Gb mobile communications:

Unlimited information, anywhere. Capacity well beyond 5G.

TV-resolution wireless imaging:

See, fly, drive perfectly in any conditions.

Benefits of Short Wavelengths

Communications: Massive spatial multiplexing, massive # of parallel channels

Imaging: very fine angular resolution

But:

High losses in foul or humid weather. High λ^2/R^2 path losses. ICs: poorer PAs & LNAs. Beams easily blocked.

100-340GHz wireless: terabit capacity, short range, highly intermittent

mm-waves: benefits & challenges

Sheldon: 2010 IEEE APS-URSI Torklinson : 2011 IEEE Trans Wireless Comm

Need phased arrays (overcome high attenuation)

100

10

0.1

0.01

Rain Attenuation, dB/km

Need mesh networks

 $e^{-\alpha R}$ $\propto N_{receive} N_{transmit} - \frac{N}{R^2}$ received transmit

140-340 GHz: Applications

If we use instead a 75GHz carrier, but constrain the handset to a similar size (8mm×8mm) and the hub to the same number of elements then the range becomes 210 meters (vs. 225 meters)

Would be similar performance; except that PAs, LNAs are poorer @ 140GHz

$$\frac{P_{received}}{P_{trans}} = \frac{D_{hub}D_{hand}}{16\pi^2} \left(\frac{\lambda}{R}\right)^2 e^{-\alpha R} \qquad D_{hand} = 4\pi A_{hand} / \lambda^2 \qquad D_{hub} = D_{element}N_{hub}$$

$$\downarrow$$

$$\frac{P_{received}}{P_{trans}} = \frac{D_{hub,element}N_{hub}A_{hand}}{4\pi} \left(\frac{1}{R}\right)^2 e^{-\alpha R} \propto R^0 \cdot e^{-\alpha R}$$

*The hub array is now 9mm×655mm (vs. 5mm×350mm)

340 GHz (or even 650 GHz) backhaul

Sub-mm-wave line-of-sight MIMO network backbone

wireless @ optical speed; link network where fiber is too expensive to place. 340 GHz: 640Gb/s @ 500 meters range; 1.6 meter linear array (5Tb/s for 8×8 square array). 650 GHz: 1.28Tb/s @ 500 meter range; 1.6 meter linear array. Capacity doubles again if we use both polarizations.

340 GHz 640 Gb/s MIMO backhaul

n. wavelengui	0.021-04	
Required SNR (measured as Eb/No)	9.8	dB
	10.00	мын (н н
packaging loss (receiver)	2	dB
packaging loss (transmitter)	2	dB
end-of-life hardware degradation	3	dB
hardware design margin	3	dB
beam aiming loss (edge of beam)	0	dB
systems operating margin	10	dB
Prec, received power at 1E-3 BER	-33.00	dBm
geometric path loss	2.07E-06	
geometric path loss, dB	-56.84	dB
path obstruction loss (foliage, glass)	0.00	dB

1.6m MIMO array: 8-elements, each 80 Gb/s QPSK; 640Gb/s total

4 × 4 sub-arrays → 8 degree beamsteering

500 meters range in 50 mm/hr rain; 29 dB/km

Realistic packaging loss, operating & design margins

PAs: 82mW P_{out} (per element)

LNAs: 4 dB noise figure

340 GHz 5 Tb/s MIMO backhaul

500m range in 50mm/hr. rain.

8-element 640Gb/s linear array: requires 80mW power/element requires 1.6m linear array

8-element 5Tb/s square array: same link assumptions requires 10mW power/element ...10W total radiated power requires 1.6m square array

140 GHz, 640 Gb/s MIMO backhaul

Why not use a lower-frequency carrier, e.g. 140 GHz ?

8-element 640Gb/s linear array: same link assumptions requires 2mW (vs. 80mW) power/element requires 2.6m (vs. 1.6m) linear array

8-element 5Tb/s square array: same link assumptions requires 0.25mW (vs. 10mW) power/element requires 2.6m (vs. 1.6m) square array

High-resolution imaging radar

Proposed demo: 220GHz frequency-scanned system

64×512 pixels, 60Hz refresh

35cm × 35cm aperture

64-element linear array

Target:

0.3m diameter, 10% reflectivity, 300m range detect with 5dB SNR in 35dB/km fog.

System:

F=6dB, P_{element}= 10dBm (10% duty cycle)

DOD-relevant: 140GHz close-range system

256×256 pixels, 10ms image acquisition time 27 cm linear arrays, 256 elements

Target (large bullet):

2cm diameter , 10% reflectivity, 100m detect with 10dB SNR in 20dB/km rain.

System

F=6dB, \rightarrow Need 0.4W PAs (10% duty cycle) (reasonable margins)

Systems

Beamforming for massive spatial multiplexing

Pure digital beamforming:

dynamic range & phase noise requirements: appear to be manageable $\checkmark \checkmark \checkmark$ Digital back-end processing requirements (die area, DC power): being investigated ???

Pure RF beamforming: (focal plane, Butler matrixes, RF beamforming) Established approach in DOD systems (high dynamic range). Issues of array tiling.

Beamforming for massive spatial multiplexing

Digital beamforming

- ✓ ADCs/DACs: only 3-4 bit ADC/DACs required (Madhow, Studer, Rodwell)
- ✓ Linearity: Amplifier P_{1dB} need be only 3dB above average power (Madhow).
- ✓ Phase noise: Requirements same as for SISO (Alon, Madhow, Niknejad, Rodwell)
 - Efficient digital beamforming: beamspace algorithm=complexity ~N× log(N) (Madhow)
 - Efficient digital beamforming: low-resolution matrix (Studer)
 - Efficient channel estimation : fast beamspace algorithm (Studer)
 - Efficiently addressing true-time-delay problem: "rainbow" FFT algorithm (Madhow)
- **Array-to-backplane interconnect power**: low-power analog baseband 50Ω links (Rodwell) In progress...
 - Propagation models and measurements: (Molisch)
 - Blockage probability, mesh networks, network protocols: (Rangan, Cabric)
 - MIMO system power analysis: (Rangan, Cabric, Buckwalter)

Transistors

mm-Wave Wireless Transceiver Architecture

custom PAs, LNAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

IC Technologies for 100 + GHz systems

Silicon

baseband processing at all frequencies RF sections @ 140, 200GHz PAs, LNAs in short-range 140, 220 GHz links

GaN

high-power amplifiers in long-range 140,220GHz links (possibly 340GHz ?)

InP HEMT

low-noise amplifiers in long-range 140,220GHz links low-noise amplifiers @ 340, 650GHz

InP HBT

medium-power amplifiers in long-range 140,220GHz links power amplifiers @340, 650GHz RF sections @ 340, 650GHz

spatially multiplexed base station

MIMO hub: 140GHz: F= **4dB**, P_{avg}=17.5dBm, P_{sat}≅**21.5dBm** 220GHz: F= 4dB, P_{avg}=21dBm, P_{sat}≅25dBm

MIMC array propagation range

650GHz: F= **4dB**, P_{avg}=14.5dBm, P_{sat}≅**18.5dBm**?

mm-wave CMOS (UCSB examples)

150 GHz amplifier:

IBM 65 nm bulk CMOS, 2.7dB gain per stage Seo et al., JSSC, Dec. 2009

145 GHz amplifier

GF 45 nm SOI CMOS, 6.3 dB gain per stage Kim, Simseck, 2017 BCICTS

Frequency (GHz)

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/ μ m total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi: GaAs PAs, LNAs

mm-wave links need:

high transmit power, low receiver noise

0.47 W @86GHz

H Park, UCSB, IMS 2014

0.18 W @220GHz T Reed, UCSB, CSICS 2013

1.9mW @585GHz M Seo, TSC, IMS 2013

Gallium Nitride Power Technologies

GaN is the leading high-frequency power technology

130nm / 1.1THz InP HBT Technology

Rode (UCSB), IEEE TED, 2015

130nm / 1.1THz InP HBT: IC Examples

220 GHz 0.18W power amplifier

UCSB/Teledyne: T. Reed et al: 2013 CSICS

325 GHz, 16mW power amplifier

UCSB/Teledyne: A. Ahmed, 2018 EuMIC Symp.

Integrated ~600GHz transmitter

Teledyne: M. Urteaga et al: 2017 IEEE Proceedings

~620 GHz

Transistor scaling laws: (V,I,R,C, τ) vs. geometry

Frequency Limits and Scaling Laws of (most) Electron Devices

Keep constant length

Increase current density 4:1

Bipolar Transistor Design

 $\tau_b \approx T_b^2 / 2D_n$ $\tau_c = T_c/2v_{sat}$ $C_{cb} = \varepsilon A_c / T_c$ $I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$ $\Delta T \propto \frac{P}{L_E} \left| 1 + \ln \left(\frac{L_e}{W_e} \right) \right|$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$

$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

(emitter length L_E)

Bipolar Transistor Design: Scaling

 $\tau_h \approx T_h^2/2D_n$ $\tau_c = T_c/2v_{sat}$ $C_{ch} = \varepsilon A_c / T_c$ $I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$ $\Delta T \propto \frac{P}{L_{E}} \left| 1 + \ln \left(\frac{L_{e}}{W_{e}} \right) \right|$ $R_{ex} = \rho_{\text{contact}} / A_{e}$ $R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L} + \frac{W_{bc}}{6L} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contact}}}$

(emitter length L_E)

Making faster bipolar transistors

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

THz HBTs: The key challenges

Obtaining good base contacts

in HBT vs. in contact test structure (emitter contacts are fine)

RC parasitics along finger length

metal resistance, excess junction areas

Towards a 2 THz SiGe Bipolar Transistor

Similar scaling

InP: 3:1 higher collector velocity SiGe: good contacts, buried oxides

Key distinction: Breakdown

InP has:

thicker collector at same $f_{\tau}\text{,}$ wider collector bandgap

Key requirements:

low resistivity Ohmic contacts note the high current densities

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

	InP	SiGe	
emitter			
junction width	64	18	nm
access resistivity	2	0.6	Ω – μ m ²
base			
contact width	64	18	nm
contact resistivity	2.5	0.7	Ω – μ m ²
collector			
thickness	53	15	nm
current density	36	125	mA/µm²
breakdown	2.75	1.3?	V
f _τ	1000	1000	GHz
f _{max}	2000	2000	GHz

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in f_τ: improved noise less required transmit power smaller PAs, less DC power

or higher-frequency systems

InP HEMTs: state of the art

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

FET Scaling Laws (these now broken)

FET parameter	change			
gate length	decrease 2:1			
current density (mA/mm)	increase 2:1			
specific transconductance (mS/mm)	increase 2:1			
transport mass	constant			
2DEG electron density	increase 2:1			
gate-channel capacitance density	increase 2:1			
dielectric equivalent thickness	decrease 2:1			
channel thickness	decrease 2:1			
channel state density	increase 2:1			
contact resistivities	decrease 4:1			

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

FET Scaling Laws (these now broken)

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
specific transconductance (mS/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling. Shorter gate lengths degrade electrostatics \rightarrow reduced $g_m/G_{ds} \rightarrow$ reduced f_{max} , f_{τ}

Towards faster HEMTs: MOS-HEMTs

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO_2 (ϵ_r =25): adequately low leakage

Scaling limit: source access resistance

HEMT: InAlAs barrier is under N+ source/drain solution: regrowth, place N+ layer <u>on</u> InAs channel

Target ~10nm node

~0.3nm EOT, 3nm thick channel 1.2 to 1.5 THz f_{τ} .

Jun Wu, UCSB, IEEE EDL, 2018

ICs

mm-Wave IC design: the challenges

Transistor gains are low: f_{signal} is significant fraction of f_{max} . match for optimum gain, noise, or power.

Device dimensions are a significant fraction of a wavelength Even short lengths of wiring add serious parasitics

Transmission-line losses are high

low Q in VCO resonators and filters high combining losses in PAs: low power, low efficiency several dB added noise in LNAs.

Thin-film microstrip: inverted or right-side-up

inverted microstip line

Ground Plane

130nm /1.1 THz InP HBT ICs to 670 GHz

614 GHz fundamental VCO M. Seo, TSC / UCSB

620 GHz, 20 dB gain amplifier

M Seo, TSC IMS 2013 also: 670GHz amplifier J. Hacker, TSC IMS 2013 (not shown)

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL M. Seo, TSC IMS 2011

	l		
PEE Phase detector		Active Loop filter	VCO
Clock	• • • •	Dynamic Frequency divider	vco
	4		

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC / UCSB CSIC 2010

220 GHz 180 mW power amplifier T. Reed, UCSB CSICS 2013

81 GHz 470 mW power amplifier H-C Park UCSB IMS 2014

Integrated 300/350GHz Receivers: LNA/Mixer/VCO M. Seo TSC

600 GHz Integrated Transmitter PLL + Mixer M. Seo TSC

214 GHz, 180mW Power Amplifier (330 mW design)

45

205GHz Logic in Thin-Film Inverted Microstrip

205 GHz divider, Griffith et al, IEEE CSICS, Oct. 2010

8:1, 205 GHz static divider in 256 nm InP HBT. Image taken before top metal (ground plane) deposition

140GHz Transceivers: GF 22nm SOI CMOS

A. Farid UCSB, 2019 RFIC symposium

1.9 mm

RX Characterization

TX Characterization

JUMP InP Power Amplifier Design

ComSenTer COMMUNICATIONS SENSING TERAHERTZ

Class-A mm-Wave Power Amplifiers

120, 140, 220, 300GHz designs Power: 50-100-200mW 140GHz efficiencies: 17%

Class-B mm-Wave Power Amplifiers

120GHz designs Power: 30 mW 140GHz efficiencies: 28%

ICs taped out Feb. 2019 Presently in fabrication Expected test: late summer

Description	Area(mm×mm)
140GHz,P _{out} =19.3dB _m , PAE=13%, Gain=23.2dB	0.63×1.08
140GHz, P _{out} =21.8dB _m , PAE=13.5%, Gain=23.4dB	1.2 ×1.09
140GHz,P _{out} =19.8dB _m , PAE=6.6%, Gain=24.8dB	0.95×1.07
140GHz,P _{out} =19.5dB _m , PAE=17.9%, Gain=14.5dB	0.63× 0.86
220GHz,P _{out} =20.2dB _m , PAE=7.8%, Gain=19.7dB	1.09×0.78
140GHz,P _{out} =19.3dB _m , PAE=17.1%, Gain=14.4dB	0.6×0.79
220GHz,P _{out} =15.9dB _m , PAE=10.2%, Gain=17.9dB	0.56×0.79
300GHz,P _{out} =13.5dB _m , PAE=4.2%, Gain=13.5dB	0.63×0.8
300GHz,P _{out} =17.8dB _m , PAE=3.5%, Gain=15.8dB	1.1×0.94
140GHz,P _{out} =19.7dB _m , PAE=8.1%, Gain=17.7dB	0.95×0.9
140GHz,P _{out} =21.7dB _m , PAE=10.4%, Gain=30.7dB	1.2×1.3
120GHz, P _{out} =20.4dB _m , PAE=9.2%, Gain=20.4dB	0.95×0.98
140GHz, P _{out} =17.3dB _m , PAE=7.5%, Gain=25.3dB	1.07×0.54
140GHz, P _{out} =15dB _m , PAE=28%, Gain=16dB	
	Description 140GHz,P _{out} =19.3dB _m , PAE=13%, Gain=23.2dB 140GHz,P _{out} =21.8dB _m , PAE=13.5%, Gain=23.4dB 140GHz,P _{out} =19.8dB _m , PAE=6.6%, Gain=24.8dB 140GHz,P _{out} =19.5dB _m , PAE=17.9%, Gain=14.5dB 220GHz,P _{out} =19.5dB _m , PAE=17.9%, Gain=19.7dB 140GHz,P _{out} =19.3dB _m , PAE=7.8%, Gain=19.7dB 140GHz,P _{out} =19.3dB _m , PAE=17.1%, Gain=14.4dB 220GHz,P _{out} =15.9dB _m , PAE=10.2%, Gain=17.9dB 300GHz,P _{out} =15.9dB _m , PAE=4.2%, Gain=13.5dB 300GHz,P _{out} =17.8dB _m , PAE=3.5%, Gain=15.8dB 140GHz,P _{out} =19.7dB _m , PAE=3.5%, Gain=15.8dB 140GHz,P _{out} =21.7dB _m , PAE=8.1%, Gain=30.7dB 120GHz, P _{out} =20.4dB _m , PAE=9.2%, Gain=20.4dB 140GHz, P _{out} =17.3dB _m , PAE=9.2%, Gain=20.4dB 140GHz, P _{out} =17.3dB _m , PAE=7.5%, Gain=25.3dB

James Buckwalter, Mark Rodwell: UCSB

JUMP 140GHz PA: power and S-parameter simulations **ComSenTer**

Tachnology	250-nm				
Technology	InP HBT				
Freq, GHz	140				
VCC, V	2.5				
J _{bias} ,mA/um	1.3				
S21, dB	25				
P _{out} ,dB _m , 2dB	19.1				
PAE % , 2dB	12.6				
P_{sat} , dB _m	20.9				
PAE _{sat} %	18.3				
BW _{3dB} , GHz	43				
P _{DC} , W	0.65				

JUMP 220GHz PA (CB version)

Power cell:

Smaller base capacitor,

SRF=679GHz

Decrease the shunt inductor

Two stage drivers:

Similar to power cell with higher cap SRF=512GHz

Technology	250-nm InP HBT
Freq, GHz	220
VCC, V	2.8
J _{bias} ,mA/um	1.3
S21, dB	22.3
P _{out} ,dB _m , 2dB	21
PAE % , 2dB	8.3
P _{sat} ,dB _m	22
PAE _{sat} %	10.4
BW _{3dB} , GHz	48
P _{DC} , W	1.5

78fF

132fF

78fF

Area=1.09 mm imes 0.78mm

JUMP 300GHz PA (CB version)

power cell and driver:

Decrease base cap and inductor

SRF=714GHz

Three driver stages

Technology	250-nm InP HBT
Freq, GHz	300
VCC, V	2.5
J _{bias} ,mA/um	1.3
S21, dB	17.6
P _{out} ,dB _m , 2dB	17.8
PAE % , 2dB	3.5
P_{sat} , dB _m	19.4
PAE _{sat} %	5
BW _{3dB} , GHz	43
P _{DC} , W	1.65

Four fingers, LE =6um.

Packages

The mm-wave module design problem

How to make the IC electronics fit ?

100+ GHz arrays: $\lambda_0/2$ element spacing is very small. Antennas on or above IC \rightarrow IC channel spacing = antenna spacing \rightarrow *limited IC area to place circuits*

How to avoid catastrophic signal distribution losses ?

long-range, high-gain arrays: array size can be large. ICs beside array \rightarrow very long wires between beam former and antenna \rightarrow *potential for very high signal distribution losses*

How to remove the heat ?

100+ GHz arrays: element spacing is very small. If antenna spacing = IC channel spacing, then power density is very large

mm-wave/sub-mm-wave packaging

Not all systems steer in two planes... ...some steer in only one.

Not all systems steer over 180 degrees... ...some steer a smaller angular range

Arrays can often be linear (1D), instead of rectangular (2D) Element spacing can often be greater than $\lambda/2$.

 \rightarrow Array packaging then greatly simplified.

Concept: Tile for linear arrays

Terrestrial system: horizontal steering only \rightarrow linear array. Space at edges of linear array: room for III-V PAs, LNAs. Alternating-sides feed: 2mm pitch \rightarrow room for large GaN PAs. Mounting directly on metal carrier \rightarrow heatsinking.

140GHz array module design

Simulations good: working with Kyocera. June tapeout?

140GHz Indoor Gigabit Network Demonstration

Concept: module for small angular scanning

Terrestrial system: horizontal + vertical steering \rightarrow rectangular array. Limited angular steering range (installation) \rightarrow spacing >> $\lambda/2$ Endfire / edge-card geometry: room for III-V PAs, LNAs. Mounting directly on metal carrier \rightarrow heatsinking.

If Vivaldi's are replaced with dipoles, element spacing can be reduced to $\lambda/2$. \rightarrow potential for wider angular scanning

 λ /2-spaced 2-D Arrays

Tray design

Vertical spacings become very small difficult to remove heat

Split-block / waveguide design heatsinking maintained difficult to manufacture

Wireless above 100GHz

Wireless above 100 GHz

Massive capacities

large available bandwidths <u>massive</u> <u>spatial</u> <u>multiplexing</u> in base stations and point-point links

Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

IC Technology

All-silicon for short ranges below 250 GHz. III-V LNAs and PAs for longer-range links. Just like cell phones today III-V frequency extenders for 340GHz and beyond

The challenges

spatial multiplexing: computational complexity packaging: fitting signal channels in very small areas

In case of questions

A	В	С	D	E	F	G	н	I	J	К	L	М		
1	Boldface indicates paramet	ters to (enter, o	ther parameters are ca	culate	d by forr	nula an	d should b	be left alo	one				
2	This spreadsheet calculates power levels for Q	PSK point-p	oint digital m	icrowave radio links along the surface										
3	To calculate RANGE, vary the range until the tr	ransmit powe	er (cell F4) is	at the appropriate level										
4	B: Bit rate	1.00E+09	1/sec	QPSK required radiated power/beam	17.0	dBm	5.07E-02	W	Don't confuse	radiated pow	er with PA ou	tput power		
5	carrier frequency	1.40E+11	Hz	PA output power per element / beam	-5.0	dBm	3.14E-04	W	They differ by	cell C22, the	transmitter p	ackaging loss,		
6	λ: wavelength	2.14E-03	m	QPSK total required radiated power	38.1	dBm	6.48E+00	W	which includes	s transmit (bu	it not receive)	antenna losses.	i.	
7	Required SNR (measured as Eb/No)	9.8	dB	total PA output power per element	16.0	dBm	4.01E-02	W		Total PA out	put power	1.03E+01	W	
8	F: receiver noise figure	3	dB	Transmitter: Base station										
9	R: transmission range	225.0	m	A_effective	1.71E-03	meters^2	372.88	Wavelengths ²						
10	atmospheric loss	1.993E-02	dB/m	Vertical beam angle, peak-null	25.00	deg	0.4363	radians						
11	Dant, trans transmit antenna directivity	4.69E+03	none	Horizontal beam angle, peak-null	0.35	deg	0.0061	radians						
12	Dant, rcvr receive antenna directivity	1.03E+02	none	array rows and columns	1	# rows	256	# columns						
13	α : bandwidth factor (0.5< α <1)	0.80		total # array elements	256									
14	radiated channel bandwidth required	800.0	MHz	vertical angle scanned, total	25.0	deg								
15	# beams	128		horizontal angle scanned, total	89.6	deg								
16	кТ	-173.83	dBm (1Hz)	array height	2.37	wavelengths	5.07E-03	meters						
17	packaging loss (receiver)	2	dB	array width	163.70	wavelengths	3.51E-01	meters						
8	packaging loss (transmitter)	2	dB	element height	2.37	wavelengths	5.07E-03	meters						
19	end-of-life hardware degradation	2	dB	element width	0.64	wavelengths	1.37E-03	meters						
20	hardware design margin	2	dB	Antenna directivity, dB	36.71	dB								
21	beam aiming loss (edge of beam)	2	dB	Receiver-handset										
22	systems operating margin	5	dB	A_effective	3.75E-05	meters^2	8.16	Wavelengths ²						
23	Prec, received power at 1E-3 BER	-60.03	dBm	Vertical beam angle, peak-null	20.0	deg	0.3491	radians						
24	geometric path loss	2.76E-07		Horizontal beam angle, peak-null	20.0	deg	0.3491	radians						
25	geometric path loss, dB	-65.59	dB	array rows and columns	8	# rows	8	# columns						
26	path obstruction loss (shadowing)	5.00	dB	vertical angle scanned, total	160	deg								
27	atmospheric loss, dB	4.48	dB	horizontal angle scanned, total	160	deg								
28	atmospheric loss	19.93	dB/km	array height	2.9E+00	wavelengths	6.27E-03	meters	<calculation< td=""><td>ns are a bit of</td><td>f</td><td></td><td></td><td></td></calculation<>	ns are a bit of	f			
29				array width	2.9E+00	wavelengths	6.27E-03	meters	for the handse	et element sp	acings becau	se		
30				element height	3.65E-01	wavelengths	7.83E-04	meters	with a wide ar	ngular scan ra	ange, the ang	ular resolution		
31				element width	3.65E-01	wavelengths	7.83E-04	meters	varies as a fu	nction of scar	n angle			
32				Antenna directivity, dB	20.11	dB								
33														
34	rain attenuation fits from Olesn, Rogers, Hodge	e, IEEE Tran	s Ant and Pro	op, March 1978				Н = 0	, 4, 9.2 km; v =	= 7.5, 1, 0.08	g/m3			
35	Rain rate, mm/hr	50	mm/hr	1.97	inch/hr			100						-
4	75Hz_downlink 140GHz_down	link 140	GHz_uplink	÷ (+)	0.00		: •	F F			•	-		
	·										■ P – —		- + 90	0%

It we use ins	stead	a 7!	5GHz carriei	ſ.						utput power
								_		ackaging loss,
the range in	creas	es t	o 325 meter	rs (vs	5. 25	0 m	eters	5)		antenna losse 1.02E+01
hut the han	dset l	herr	mes 16mm	x16r	nm	lvs	9mm	x9m	m)	
Sut the nam	uset r		mes romm	VT01		\v 3.	5		••••	
and the hub	OKKO	1 ho				h		max2		
and the hub	dia	/ be	comes 9mm		JUU	11 (V	5. 5 ጠ	IIIX2	50 m	<u>m)</u>
eams	128		horizontal angle scanned, total	89.6	deg					
	-173.83	dBm (1Hz)	array height	2.37 v	vavelengths	9.46E-03	meters		2 1	beam aiming add
ckaging loss (receiver)	2	dB	array width	163.70 v	vavelengths	6.55E-01	meters		5.00 k	blockage add
kaging loss (transmitter)	2	dB	element height	2.37 v	vavelengths	9.46E-03	meters		6.69 a	atmosphere add
d-of-life hardware degradation	2	dB	element width	0.64 v	vavelengths	2.56E-03	meters		26.02	100 vs 5 m add
dware design margin	2	dB	Antenna directivity, dB	36.71	dB				39.72	power adjustment range, d
maining loss (adap of beam)			Dessiver handest	-	I					
	1/2m	mxs	(mm) hands	ict a	rav	8.16	Wavelengths ²			
r = 1/2) <i> </i>		ıay,	0.3491	radians			
Jr, use a 4×4	τισπ									$-7.41E \pm 0.1$
Jr, use a 4×4	т (опп					0.3491	radians			-1.412+01
Jr, use a 4×4		om	os 210 moto	orc		0.3491 8	radians # columns			-7.412+01
Or, use a 4×4 and the rang	;e bec	om	es 210 mete	ers.		0.3491 8	radians # columns			-7.412+01
Or, use a 4×4 and the rang	se bec	om	es 210 mete	ers.	uey	0.3491 8	radians # columns			
Or, use a 4×4 and the rang	se bec	COM dB/km	es 210 mete	2.9E+00 v	ueg vavelengths	0.3491 8 1.17E-02	radians # columns meters	<calculation< td=""><td>ns are a bit off</td><td></td></calculation<>	ns are a bit off	
Or, use a 4×4 and the rang	se bec 20.60	COM dB/km	es 210 mete array height array width	2.9E+00 v 2.9E+00 v	vavelengths	0.3491 8 1.17E-02 1.17E-02	radians # columns meters meters	<calculation< td=""><td>ns are a bit off et element spac</td><td>tings because</td></calculation<>	ns are a bit off et element spac	tings because
Or, use a 4×4 Ind the rang hospheric loss		COM dB/km	es 210 mete array height array width element height	2.9E+00 v 2.9E+00 v 3.65E-01 v	vavelengths vavelengths vavelengths	0.3491 8 1.17E-02 1.17E-02 1.46E-03	radians # columns meters meters meters	<calculation for the handse with a wide ar</calculation 	ns are a bit off et element spac ngular scan ran	tings because ge, the angular resolution
Jr, use a 4×4 Ind the rang Dospheric loss		dB/km	es 210 mete array height array width element height element width	2.9E+00 v 2.9E+00 v 3.65E-01 v 3.65E-01 v	vavelengths vavelengths vavelengths vavelengths vavelengths	0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians # columns meters meters meters meters	<calculation for the handse with a wide ar varies as a fu</calculation 	ns are a bit off et element spac ngular scan ran nction of scan a	cings because ge, the angular resolution angle
Or, use a 4×4 Ind the rang hospheric loss		dB/km	es 210 mete array height array width element height element width Antenna directivity, dB	2.9E+00 v 2.9E+00 v 3.65E-01 v 3.65E-01 v 20.11	vavelengths vavelengths vavelengths vavelengths vavelengths dB	0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians # columns meters meters meters meters	<calculatior for the handse with a wide ar varies as a fu</calculatior 	ns are a bit off et element spac ngular scan ran nction of scan a	cings because ge, the angular resolution angle
Or, use a 4×4 Ind the rang hospheric loss		dB/km	es 210 meter array height array width element height element width Antenna directivity, dB	2.9E+00 v 2.9E+00 v 3.65E-01 v 3.65E-01 v 20.11	vavelengths vavelengths vavelengths vavelengths vavelengths dB	0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians # columns meters meters meters meters	<calculatior for the handse with a wide ar varies as a fu</calculatior 	ns are a bit off et element spac ngular scan ran nction of scan a	cings because ge, the angular resolution angle
Jr, use a 4×4 and the rang nospheric loss, up nospheric loss		dB/km	es 210 meter array height array width element height element width Antenna directivity, dB	2.9E+00 v 2.9E+00 v 3.65E-01 v 3.65E-01 v 20.11	vavelengths vavelengths vavelengths vavelengths vavelengths dB	0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians # columns meters meters meters meters	<calculation for the handse with a wide an varies as a fun-</calculation 	ns are a bit off et element spac ngular scan ran nction of scan a	cings because ge, the angular resolution angle

340 GHz 640 Gb/s MIMO backhaul

	А В	С	D	E	F	G	Н	I.	J	К	L	М	Ν	0	
1	Boldface indicates parame	ters to	enter, c	other parameters are	e calcul	ated by	formula	<mark>a and shoเ</mark>	uld be left alone						
2	This spreadsheet calculates power levels for 40	PSK point-p	oint digital m	icrowave radio links along the surfa	ice										
3	To calculate RANGE, vary the range until the tra	nsmit power	(cell F4) is at	the appropriate level	30					Power levels for	or 64-QAM, a	pprox			1
4	B: Bit rate *per MIMO transmitter*	8.00E+10	1/sec	4QAM required radiated power	29.2	dBm	8.281E-01	W		41.31	dBm	1.35E+01	W		1
5	carrier frequency	3.40E+11	Hz	output power per element	19.1	dBm	8.20E-02	W	output power per element	31.27	dBm	1.34E+00	W		1
6	λ: wavelength	8.82E-04	m	output power per sub-array	31.2	dBm	1.31E+00	W	output power per sub-array	43.31	dBm	2.14E+01	W		1
7	Required SNR (measured as Eb/No)	9.8	dB	output power of whole system	40.2	dBm	1.05E+01	W	output power of whole system	52.34	dBm	1.71E+02	W		1
8				Transmitter						Power levels for	or 16-QAM, a	pprox			1
9				A effective	6.35E-04	meters ²	815.67	Wavelengths ²		35.71	dBm	3.725E+00	W		
10	F: receiver noise figure	4	dB	Vertical beam angle, FWHM	2.0	deg	0.0349	radians	output power per element	25.67	dBm	3.690E-01	W		1
11	R: transmission range	500.0	m	Horizontal beam angle, FWHM	2.0	deg	0.0349	radians	output power per sub-array	37.71	dBm	5.903E+00	W		1
12	atmospheric loss	2.875E-02	dB/m	array rows and columns	4	# rows	4	# columns	output power of whole system	46.74	dBm	4.723E+01	W		1
13	Dant, trans transmit antenna directivity	1.03E+04	none	total # array elements	16										
14	Dant, rcvr receive antenna directivity	1.03E+04	none	vertical angle scanned, total	8.0	deg									1
15	α : bandwidth factor (0.5< α <1)	0.80		horizontal angle scanned, total	8.0	deg					0				1
16	radiated channel bandwidth required QPSK	6.40E+10	Hz	array height	28.6	wavelengths	7.16				8-eien	ient			1
17	radiated channel bandwidth required 64QAM	2.133E+10	Hz	array width	28.6	wavelengths					linear	array			1
18	# MIMO channels	8		array height	2.53E-02	meters	1.00	inches				9			
19	total data rate	6.40E+11	sec	array width	2.53E-02	meters	1.00	inches				70-			1
20	kT	-173.83	dBm (1Hz)	Antenna directivity, dB	40.11	dB					A 🖌		$\langle \rangle$		
21	packaging loss (receiver)	2	dB	Receiver							↑ D 5		$\langle \rangle$		
22	packaging loss (transmitter)	2	dB	A_effective	6.35E-04	meters^2	815.67	Wavelengths ²			h 🐔				1
23	end-of-life hardware degradation	3	dB	Vertical beam angle, FWHM	2.0	deg	0.0349	radians			" 🖌				1
24	hardware design margin	3	dB	Horizontal beam angle, FWHM	2.0	deg	0.0349	radians			<u>ج</u> 🕽 🗧		44		
25	beam aiming loss (edge of beam)	0	dB	array rows and columns	4	# rows	4	# columns						/	
26	systems operating margin	10	dB	vertical angle scanned, total	8	deg					<u>– – – – – – – – – – – – – – – – – – – </u>		4 × 4	214	
27	Prec, received power at 1E-3 BER	-33.00	dBm	horizontal angle scanned, total	8	deg					e 5		subarra	зy	
28	geometric path loss	2.07E-06		array height	2.9E+01	wavelengths					. <u></u>				
29	geometric path loss, dB	-56.84	dB	array width	2.9E+01	wavelengths					se Se		\mathbf{i}		
30	path obstruction loss (foliage, glass)	0.00	dB	array height	2.53E-02	meters	1.00	inches			pa 🕴 🗧		` MIMO		
31	atmospheric loss, dB	14.374685	dB	array width	2.53E-02	meters	1.00	inches			5	· 1	array		
32	atmospheric loss	28.75	dB/km	Antenna directivity, dB	40.11	dB					* W				
33											25-	 propagatio 	n		
34	rain attenuation fits from Olesn, Rogers, Hodge,	IEEE Trans	Ant and Prop	, March 1978				H = 0.4, 9.3	2 km; v = 7.5, 1, 0.08 g/m	13		range			
35	Rain rate, mm/hr	50	mm/hr	1.97	inch/hr						1				
36	Ga	3.38E+00		Gb	0.616			F	Λ	i Λ	-				
37	Ea	-1.51E-01		Eb	0.0126		E	° F A	/Λ		a				_
38	а	1.40E+00		b	6.63E-01		B/k	F A		/	1				
39	alpha=aR^b	1.87E+01	dB/km	zero-rain-rate attenuation	10	dB/km		. L			1				
10	140CHz 340CHz 650C		10 array I	anaths	to the right	•				/	3				1
-	140GHZ 340GHZ 650G		io_anay_i					: 1							

340 GHz 5 Tb/s MIMO backhaul

This spreadsheet calculates power levels for 40	PSK point-poi	int digital m	icrowave radio links along the surfa	ce								
To calculate RANGE, vary the range until the tra	nsmit power (c	ell F4) is a	the appropriate level	30					Power levels	for 64-QAM, app	orox	
B: Bit rate *per MIMO transmitter*	8.00E+10	1/sec	4QAM required radiated power	20.2	dBm	1.035E-01	W		32.28	dBm	1.69E+00	W
carrier frequency	3.40E+11	Hz	output power per element	10.1	dBm	1.03E-02	W	output power per element	22.24	dBm	1.67E-01	W
λ: wavelength	8.82E-04	m	output power per sub-array	22.2	dBm	1.64E-01	W	output power per sub-array	34.28	dBm	2.68E+00	W
Required SNR (measured as Eb/No)	9.8	dB	output power of whole system	40.2	dBm	1.05E+01	W	output power of whole syster	n 52.34	dBm	1.71E+02	W
			Transmitter						Power levels	for 16-QAM, app	orox	
			A effective	6.35E-04	meters^2	815.67	Wavelengths ²		26.68	dBm	4.656E-01	W
F: receiver noise figure	4	dB	Vertical beam angle, FWHM	2.0	dea	0.0349	radians	output power per element	16.64	dBm	4.612E-02	W
R: transmission range	500.0	m	Horizontal beam angle. FWHM	2.0	dea	0.0349	radians	output power per sub-arrav	28.68	dBm	7.379E-01	W
atmospheric loss	2.875E-02	dB/m	array rows and columns	4	# rows	4	# columns	output power of whole system	46.74	dBm	4.723E+01	W
Dant trans transmit antenna directivity	1.03E+04	none	total # array elements	16							>	
Dant, rcyr receive antenna directivity	1.03E+04	none	vertical angle scanned total	8.0	dea							
α : bandwidth factor (0.5< α <1)	0.80		horizontal angle scanned, total	8.0	dea			500.03				
radiated channel bandwidth required QPSK	6.40E+10	Hz	array height	28.6	wavelengths	7.16		64-0	ement	squar	e arra	V
radiated channel bandwidth required 64QAM	2.133E+10	Hz	array width	28.6	wavelengths			04.61	entern	Jquun		7
# MIMO channels	64		array height	2.53E-02	meters	1.00	inches		,			transmitter
	E 40E 40			2 525 02	motoro	1.00	inchoo		(1-10 ~	
total data rate	5.12E+12	sec	array width	Z.33E-0Z	i meters i	1,00	Inches	11 1 1	a	perture area		, A drav
requires 10	mW	dBm (1Hz)	Antenna directivity dB	ele	mer	15.67 0349	Wavelengths ^A 2	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a	
requires 10 requires 10 10W tota	mW I rac		itput per ed powe	ele r	mer	15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a a a a a	
total data rate kT p r e h b s requires 10 h 10W tota Proc. received power at 15 3 REP	b .12E+12 173.83 mW l rac		Antenna directivity dB Itput per ed powel	ele r	mer	15.67 .0349 .0349 4	Wavelengths [^] 2 radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a a a a a a a a a a a a a a a a a a	
h b s Prec, received power at 1E-3 BER prec, received power at 1E-3 BER	b .12E+12 173.83 mW l rac -33.00 2075.05	dBm (1Hz) OU liat	Antenna directivity dB Itput per Itput per Idput 	ele 611 612 612 612 612 612 612 612 612 612		15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		
total data rate kT P P requires 10 h b s 10W tota Prec, received power at 1E-3 BER geometric path loss recurrent loss	5.12E+12 173.83 mW I rac -33.00 2.07E-06 56.84	dBm (1Hz) OU liat dBm	Antenna directivity dB Itput per Itput per Itput per I	8 2.95+01 8 2.95+01 2.95+01	deg wavelengths	15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		
total data rate kT P P P requires 10 e h b S Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass)	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84	dBm (1Hz) OU liat dBm dB dB	Antenna directivity dB Itput per Itput per Itput per 	8 2.95+01 2.95+01 2.95+01 2.95+01	deg wavelengths wavelengths	1.00 15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{a_{\rm I}}{{\rm wavel}}\right)$	ength · distan	ce) a a a a a a a a a a a a a a a a a a a	
total data rate kT P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685	dBm (1Hz) OU liat dBm dB dB dB	Antenna directivity dB Itput per Itput per Itput per	8 2.9E+01 2.9E+01 2.9E+01 2.53E-02 2.53E-02	deg wavelengths meters meters	1.00 15.67 .0349 .0349 4	Wavelengths ² radians radians # columns inches	# channel	$S \propto \left(\frac{a_{\rm I}}{{\rm wavel}}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput per It	8 2.95+01 2.95+01 2.95+01 2.53E-02 2.53E-02 2.53E-02 40 11	deg wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$S \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput per 	8 2.95+01 2.95+01 2.53E-02 2.53E-02 40.11	deg wavelengths meters meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths ² radians radians # columns inches inches	# channel	$S \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P P P P P P P P P P P P P	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput per	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11	deg wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths ^A 2 radians radians # columns inches inches H = 0, 4, 9.	# channel	$S \propto \left(\frac{a_{\rm F}}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P P P P P P P P P P P P P	5.12E+12 173.83 mW 173.60 2.07E-06 -56.84 0.00 14.374685 28.75 IEEE Trans A	dBm (1Hz) OU liat dBm dB dB dB dB dB dB mm/br	Antenna directivity dB Itput per Itput per Itput per Itpu	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$S \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P requires 10 h b s requires 10 h b 10W tota Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge, Rain rate, mm/hr Ga	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 IEEE Trans A 50 3.38E+00	dBm (1Hz) OU liat dBm dB dB dB dB dB dB km mm/hr	Antenna directivity dB Itput per Itput per Itput per Itpu	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11 inch/hr 0.616	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{a_{\rm II}}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT p p e h b 10W tota Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge, Rain rate, mm/hr Ga Fa	5.12E+12 173.83 mW rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 IEEE Trans A 50 3.38E+00 -1.51E-01	dBm (1Hz) OU liat dBm dB dB dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per Itput per 	8 2.95+01 2.95+01 2.53E-02 2.53E-02 40.11 inch/hr 0.616 0.0126	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{a_{\rm II}}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P P P P P P P P P P rec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge, Rain rate, mm/hr Ga Ea a	5.12E+12 173.83 mW rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 IEEE Trans A 50 3.38E+00 -1.51E-01 1.40E+00	dBm (1Hz) OU liat dBm dB dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per Itput per 	8 2.95+01 2.95+01 2.95+01 2.53E-02 40.11 inch/hr 0.0126 6.63E-01	deg wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	B =	ength · distan		$B^2/\lambda R$
total data rate kT P P P P P P P P P P rec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss P rain attenuation fits from Olesn, Rogers, Hodge, Rain rate, mm/hr Ga Ea a alpha=aR^b	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 IEEE Trans A 50 3.38E+00 -1.51E-01 1.40E+00 1.87E+01	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per	8 2.95+01 2.95+01 2.95+01 2.53E-02 2.53E-02 40.11 inch/hr 0.616 0.0126 6.63E-01	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{a_{\rm II}}{wavel}\right)$	ength · distan		$B^2/\lambda R$