A 140GHz power amplifier with 20.5dBm output power and 20.8% PAE in 250-nm InP HBT technology

A. Ahmed1, M. Seo2, A. Farid1, M. Urteaga3, J. Buckwalter1, and M. Rodwell1

1University of California at Santa Barbara, CA, USA
2Sungkyunkwan University, South Korea
3Teledyne Scientific and Imaging, Thousand Oaks, CA, USA
mm-wave Communication (140-1000 GHz)

• Objective
 – Support high data rate communication.
 – Spatial multiplexing for high capacity.
 – Cover long distance.

• Benefits (140-1000 GHz)
 – Large available spectrum, high data rate.
 – Shorter λ: more channels for the same array size.

• Challenge
 – Atmospheric attenuation is high $P_R \alpha \frac{\lambda^2}{R^2} e^{-\alpha R}$.
PA Requirements and Link Budget

- CMOS chips drive high efficiency InP power amplifiers.
- CMOS’s output power is ~2dBm.
- **20.5dBm** output power per element extends the link range to ~50m.
- Required gain ~20dB.
- Massive MIMO arrays require high efficiency PAs to avoid thermal destruction or complex heatsink.

Calculated Data

- **Tx Antenna Gain**: 22.7 dBi
- **Rx Antenna Gain**: 13 dBi
- **Link range**: 50 m
- **Required output power per element**: 20.5dBm
- **Friss Path Loss**: 73 dB
- **Rx Noise Figure**: 8.5 dB
- **Rx BW**: 5 GHz
- **Bit rate**: 10 Gb/s
- **System Margin**: 15 dB
- **No of elements, Tx (λ/2 spacing)**: 32
- **No of elements, Rx (λ/2 spacing)**: 4

Calculated data are based on https://www.ece.ucsb.edu/Faculty/rodwell/Classes/ece218c/ECE218c.htm
250nm InP HBT Process (Teledyne*)

- $f_{\text{max}} = 650\text{GHz}$.
- $BV_{CEo} = 4.5\text{V}$.
- $J_{\text{max}} = 3\text{mA/µm}$.
- Four Au interconnect.
- MIM cap (0.3fF/µm2).
- TFR (50Ω/square).

Unit Cell Comparison

- Comparison between CE, grounded CB and CB with base capacitor
- Simulation is done under same bias condition
- Large signal simulation is more relevant in power amplifier
- CB with base capacitor shows the highest $O_{P_{1dB}}$ with associated PAE

<table>
<thead>
<tr>
<th></th>
<th>Gain*, dB</th>
<th>PAE**, %</th>
<th>P_{out}**, dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>10.7</td>
<td>15.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Grounded CB</td>
<td>13.1</td>
<td>22.4</td>
<td>13.5</td>
</tr>
<tr>
<td>CB with 600 cap</td>
<td>9.8</td>
<td>29.7</td>
<td>15.2</td>
</tr>
</tbody>
</table>

*under opt load line condition without compression **at 1dB gain compression

At 140GHz

P_{out} gain, and PAE for CE, grounded CB, and CB with base capacitor.
Unit Cell Comparison

- **Common emitter**
 - Lowest OP\(_{1\text{dB}}\) and Soft compression
 - Less sensitive to base inductance errors
- **Common base with grounded base**
 - Higher gain and OP\(_{1\text{dB}}\)
 - Requires \(-\)ve supply -> huge efficiency drop (large DC current in Re)
 - Bias is very sensitive without Re due to exponential relation (I\(_{\text{CE}}\) vs V\(_{\text{BE}}\))
 - Sensitive to base inductance errors
- **Common base with base capacitance**
 - Highest PAE and OP\(_{1\text{dB}}\) due to capacitance feedback linearization
 - Capacitance help stabilization (not shown)
 - Stable bias: negligible efficiency due to R\(_{b}\); base current is very small
 - Gain drops with smaller capacitance

<table>
<thead>
<tr>
<th></th>
<th>Gain*, dB</th>
<th>PAE**, %</th>
<th>P(_{\text{out}})**, dB(_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>10.7</td>
<td>15.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Grounded CB</td>
<td>13.1</td>
<td>22.4</td>
<td>13.5</td>
</tr>
<tr>
<td>CB with 600 cap</td>
<td>9.8</td>
<td>29.7</td>
<td>15.2</td>
</tr>
</tbody>
</table>
CB viewed as stacked PA cell*

- C_{CB} and C_{base} creates negative feedback
- This negative feedback
 - Linearize the amplifier: higher PAE and OP$_{1dB}$
 - Allows voltage swing on the base: with proper design, the output swing increases yielding in higher output power
 - Drops the output impedance: improves S22

PAE invariance*

- Assuming lossless matching network
- Internal voltages and currents are constant by proper load and base impedances*

\[2(n - 1)\omega P_{add} C_{base} = X_1 X_2 \sin(Y_1 - Y_2) \]
(derivation not shown)

- The added power per stage is kept constant for the same internal voltages and currents.

\[P_{out} = P_{add} + P_{in} \]

\[X_1 \] is the magnitude of \(I_1 \)
\[X_2 \] is the magnitude of \(I_2 \)
\[Y_1 \] is the angle of \(I_1 \) in radians
\[Y_2 \] is the angle of \(I_2 \) in radians

Power Amplifier Cell

- Common base with base capacitance
- Capacitance dropped slightly
 - More power and hard compression
 - Lower output impedance (better S22)
- Shunt stub tunes the transistor parasitics
- Two cells are combined and driven by a single driver -> better PAE
- ADS and HFSS are used for the interconnect and matching circuit simulations
Driver design

- Higher base capacitance:
 - more gain
- Input ant output are 50Ω matched
- Staggered matching for wider bandwidth

Driver cell
Combiner Design

• Transmission line combiner instead of Wilkinson
• Proposed combiner
 – Low loss and very compact
 – Smaller BW compared to Wilkinson
• Wilkinson
 – Bulky, high loss and skinny line
 – Higher BW

Proposed combiner

Wilkinson combiner
PA block diagram

- Three linearized common base stages
- Low loss and compact transmission line combiner
- First driver scaled to sustain good PAE
- Independent bias for each stage to monitor the current and optimize the PAE

Chip micrograph

Block diagram

1.08mmx0.63mm
Measurement results

- Wide band operation
- 1dB BW=20GHz
- 3dB BW=43GHz

<table>
<thead>
<tr>
<th>V_{CC1}</th>
<th>V_{CC2}</th>
<th>V_{CC3}</th>
<th>V_{BB1}</th>
<th>V_{BB2}</th>
<th>V_{BB3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>2.5V</td>
<td>1.5V</td>
<td>1.94V</td>
<td>1.36V</td>
<td>1.1V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_{CC1}</th>
<th>I_{CC2}</th>
<th>I_{CC3}</th>
<th>I_{BB1}</th>
<th>I_{BB2}</th>
<th>I_{BB3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>121mA</td>
<td>52mA</td>
<td>31.8mA</td>
<td>4.1mA</td>
<td>1.7mA</td>
<td>0.95mA</td>
</tr>
</tbody>
</table>

Measured (solid) vs simulated (dotted) S-parameters
Measurement results

- $P_{\text{sat}} = 20.5 \text{dB}_m$, and $\text{PAE} = 20.8\%$
- $P_{\text{sat}} = 18.9 - 20.5 \text{dB}_m$ over 125-150GHz

![Graph showing measured and simulated P_{out}, PAE, and gain vs input power at 140GHz.](image)

<table>
<thead>
<tr>
<th>V_{CC1}</th>
<th>V_{CC2}</th>
<th>V_{CC3}</th>
<th>V_{BB1}</th>
<th>V_{BB2}</th>
<th>V_{BB3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>2.5V</td>
<td>1.5V</td>
<td>1.95V</td>
<td>1.4V</td>
<td>1.1V</td>
</tr>
<tr>
<td>I_{CC1}</td>
<td>I_{CC2}</td>
<td>I_{CC3}</td>
<td>I_{BB1}</td>
<td>I_{BB2}</td>
<td>I_{BB3}</td>
</tr>
<tr>
<td>130mA</td>
<td>56mA</td>
<td>34mA</td>
<td>5mA</td>
<td>2mA</td>
<td>1mA</td>
</tr>
</tbody>
</table>

![Graph showing measured and simulated saturated P_{out}, PAE, and gain vs frequency.](image)
State-of-the-art results

- Highest PAE for comparable P_{sat} and gain

<table>
<thead>
<tr>
<th>Ref</th>
<th>Technology</th>
<th>Freq (GHz)</th>
<th>P_{sat} (dBm)</th>
<th>$B W_{\text{3dB GHz}}$</th>
<th>Gain at P_{sat} (dB)</th>
<th>Peak PAE %</th>
<th>Size (mm2)</th>
<th>P_{DC} (W)</th>
<th>P_{sat}/Area mW/mm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>40 nm CMOS</td>
<td>140</td>
<td>14.8</td>
<td>17</td>
<td>13**</td>
<td>8.9</td>
<td>0.34</td>
<td>0.3</td>
<td>88.8</td>
</tr>
<tr>
<td>[4]</td>
<td>130-nm SiGe HBT</td>
<td>155-180</td>
<td>18.0</td>
<td>25</td>
<td>23.5**</td>
<td>4.0</td>
<td>0.85</td>
<td>1.57*</td>
<td>74.2</td>
</tr>
<tr>
<td>[5]</td>
<td>130-nm SiGe HBT</td>
<td>112-142</td>
<td>17+</td>
<td>16</td>
<td>29**</td>
<td>13+</td>
<td>1.06</td>
<td>0.39*</td>
<td>47.2</td>
</tr>
<tr>
<td>[6]</td>
<td>130-nm SiGe HBT</td>
<td>131-180</td>
<td>14</td>
<td>49</td>
<td>22**</td>
<td>5.7</td>
<td>0.48</td>
<td>0.44*</td>
<td>52.3</td>
</tr>
<tr>
<td>[7]</td>
<td>250-nm InP HBT</td>
<td>110-150</td>
<td>23.2-24.0</td>
<td>32.7</td>
<td>14-16</td>
<td>5.8-7.0</td>
<td>1.89</td>
<td>3.46</td>
<td>134</td>
</tr>
<tr>
<td>[8]</td>
<td>250-nm InP HBT</td>
<td>115-150</td>
<td>21-21.8</td>
<td>34.8</td>
<td>15-17.5</td>
<td>8.2-10.5</td>
<td>0.75</td>
<td>1.54</td>
<td>205</td>
</tr>
<tr>
<td>This work</td>
<td>250-nm InP HBT</td>
<td>125-150</td>
<td>18.9-20.5</td>
<td>43</td>
<td>12.3-15.9</td>
<td>14.3-20.8</td>
<td>0.69</td>
<td>0.52</td>
<td>162</td>
</tr>
</tbody>
</table>
Summary

• Demonstration of record PAE at D-band
• Teledyne 250nm InP HBT has high f_{max} and BV_{CEO}
• Capacitively linearized common base
 – Higher $\text{OP}_{1\text{dB}}$, and PAE
 – Easier to bias and stabilize
• Compact and low loss transmission line network
• Driver scaling and bias optimization
Acknowledgement

• This work was supported in part by the Semiconductor Research Corporation and DARPA under the JUMP program.

• The authors thank Teledyne Scientific & Imaging for the IC fabrication. The authors would like to thank Zach Griffith for valuable insight and design review.
References