A 190-210GHz Power Amplifier with 17.7-18.5dBm Output Power and 6.9-8.5% PAE

A. Ahmed1,2, U. Soylu2, M. Seo3, M. Urteaga4, J. Buckwalter2, and M. Rodwell2

1Marki Microwave Inc., CA
2ECE, University of California, Santa Barbara, USA
3ECE, Sungkyunkwan University, South Korea
4Teledyne Scientific Company, Thousand Oaks, CA, USA
Outline

• Motivation for mm-wave frequencies and prior work.
• Application for the amplifier.
• Amplifier design
 – Power and driver cells
 – Low-loss compact combiner
• Measurement results
• Summary and conclusion
mm-wave Communication (140-1000 GHz)

• Objective
 – Support high data rate communication.
 – Spatial multiplexing for high capacity.
 – Cover long distance.

• Benefits (140-1000 GHz)
 – Large available spectrum, high data rate.
 – Shorter λ: more channels for the same array size.

• Challenge
 – Atmospheric attenuation is high $P_R \alpha \frac{\lambda^2}{R^2} e^{-\alpha R}$.
Prior Work at G-band

- At 200GHz, CMOS shows 9.4dBm with only 1.03% PAE [2].
- SiGe shows 13.5dBm with ~2% drain efficiency [3]
- GaN demonstrates higher power with <2.4% peak PAE [4], [5].
- InP presented the highest power and efficiency [6]-[18].

Key points
- Designs are not optimized for the highest PAE at OP$_{1dB}$. PAE at OP$_{1dB} < 3\%$
- Power measurement accuracy at the linear region is challenging.
This Work (190-210GHz)

- Optimize for the highest efficiency at OP_{1dB}.
- $OP_{1dB} \sim 17.4\,\text{dBm}$, PAE: 6.4% at OP_{1dB}, Gain $\sim 23\,\text{dB}$.
- Accurate power measurement at the linear region.
- This amplifier is integrated to a 200GHz transmitter (not published).
250nm InP HBT Process (Teledyne [6])

- Mm-wave amplifier requires fast technologies.
- $f_{\text{max}} = 650$GHz.
- $BV_{CEo} = 4.5$V.
- $J_{\text{max}} = 3$mA/µm.
- Four Au interconnect.
- MIM cap (0.3fF/µm2).
- TFR (50Ω/square).

Cross section of TSC250 IC
Power Amplifier Design

- Four stages amplifier.
- Combine four power cells.
- Driver scaling sustains good PAE.

- Power combining techniques
 - Parallel combining: 4:1 transmission line combiner.
 - Series combiner: stacked unit cell.

Amplifier micrograph

Amplifier block diagram

48-μm HBT periphery

24-μm HBT periphery

24-μm HBT periphery

PA cell

Driver

In

OUT

4:1 combiner

1:2 split

1:2 split

Stage 1

Stage 2

Stage 3

Stage 4

96-μm HBT periphery
Power Cell Design

- CB architecture with finite base impedance.
 - **Superior PAE at OP\textsubscript{1dB},** compared to CE or grounded CB, due to the feedback linearization [14].
- Base capacitances
 - Maximum value: limited by the self resonance frequency.
 - Minimum value: limited by the acceptable gain.
- Shunt transmission lines tunes the transistor parasitics.
- Each cell requires \(\sim 29\Omega \) load impedance.
- Matching considerations
 - Staggered tuning for better bandwidth.
 - Input impedances are close to the loadline of the driver to ensure proper saturation.
Combinder Design

- Transmission line combiners have low loss and very compact [14], [15], [17].
- Low loss 4:1 transmission line combiner.
- Combiner transforms 50Ω to the required loadline impedance for each cell (~29Ω) using a single \(\lambda /4 \) transmission line.
- Each two cells are combined by a TL with negligible electrical length.
- The required impedance for the two combined cells is 29/2Ω.
- The quarter line’s impedance is chosen to transform 100Ω to 29/2Ω.
Driver Cell Design

- Design is similar to the power cell.
- Architecture uses CB with finite base capacitance.
- Conservative driver scaling ensures hard compression characteristics at the expense of PAE degradation.
Measurement Results: s-parameters

- Good agreement at low bias
- Some deviations are observed at higher bias -> maybe heating effect.

S-parameters at $P_{DC}=444\text{mW}$

S-parameters at $P_{DC}=858\text{mW}$
Power Measurement: literature

• Conventional measurement: attenuator after a frequency multiplier chain.
• Power sweep: change the attenuator settings.
• Cons
 – The actual input power is unknown -> less accurate results.
 – In many cases, the attenuator is manually changed -> lift the probes and turn off the PA, not convenient.

Conventional power setup
Proposed Approach: setup

- The VDI’s output power is sampled by a coupler and monitored by the spectrum analyzer.
- The spectrum analyzer readings represent the power by adding the appropriate correction factor in the calibration phase.
- Sweep input power: control the signal generator.

![Proposed power setup diagram]

- **Harmonic Mixer**
- **Waveguide**
- **Spectrum Analyzer N9030B**
- **Signal Generator N5183B**
- **PM4**
- **20dB coupler**
- **23.75-26.25GHz**
- **190-210GHz**
- **~20dB Attenuation**
- **x8**

23.75-26.25GHz
190-210GHz
~20dB
Calibration phase

- Record the power difference (dB) between the power meter and spectrum analyzer readings.
- This difference is the correction factor that should be added to the spectrum analyzer readings to represent the actual input power.

![Diagram](image-url)

- Spectrum Analyzer N9030B
- Harmonic Mixer
 - Attenuation ~20dB
- Waveguide
- Signal Generator N5183B
 - Frequency 23.75-26.25GHz
- PM4
 - Coupler 20dB
 - Frequency 190-210GHz
Measurement Phase

- Sweep the signal generator power.
- Record the spectrum analyzer readings + the appropriate correction factors. This represents the amplifier input power after calibrating the probe losses by through measurements.
- Report the power meter reading.
- The power meter readings represent the amplifier output power after calibrating probe loss.
Pros of this measurement approach

• Accurate gain measurement even at very low input power.

• Power is swept by the signal generator
 -> Extremely convenient since all the measurements are done without lifting the probes or turn off the PA bias.
Power Measurement Results

- Many points are recorded at different frequencies.

<table>
<thead>
<tr>
<th>Freq, GHz</th>
<th>(\text{OP}_{1\text{dB}}, \text{dBm})</th>
<th>(\text{PAE, } % \text{ at } \text{OP}_{1\text{dB}})</th>
<th>(P_{\text{sat}}, \text{dBm})</th>
<th>(\text{PAE, } % \text{ at } P_{\text{sat}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>17.4</td>
<td>6.4</td>
<td>18.5</td>
<td>8.5</td>
</tr>
<tr>
<td>202</td>
<td>16.6</td>
<td>5.3</td>
<td>18.3</td>
<td>7.9</td>
</tr>
</tbody>
</table>

- Discrepancy between simulations and measurement maybe due to the probe conditions.
Power Measurement Results

- More points are taken at different frequencies.
- $P_{\text{sat}} = 17.7\text{-}18.5\text{dB}_m$, with $\text{PAE}=6.9\text{-}8.5\%$ over 190-210GHz
- $\text{OP}_{1\text{dB}} = 16\text{-}17.4\text{dB}_m$ with $\text{PAE}=4.7\text{-}6.4\%$ over 125-150GHz

Measured P_{out} with the associated PAE and gain vs. frequency reported at the peak PAE.
State-of-the-art results

<table>
<thead>
<tr>
<th>Ref</th>
<th>[7]</th>
<th>[8]</th>
<th>[9]</th>
<th>[10]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq, GHz</td>
<td>204</td>
<td>190</td>
<td>180-260</td>
<td>190.8-244</td>
<td>190-210</td>
</tr>
<tr>
<td>P_{sat}, dBm</td>
<td>18.0</td>
<td>11</td>
<td>17.5-21.5</td>
<td>16.2-18.9<sup>a</sup></td>
<td>17.7-18.5</td>
</tr>
<tr>
<td>Gain at P_{sat} (dB)</td>
<td>16.5</td>
<td>19.2</td>
<td>13-17.5</td>
<td>19-22<sup>a</sup></td>
<td>13.4-16.8</td>
</tr>
<tr>
<td>PAE at P_{sat}%</td>
<td>4.8</td>
<td>9.6</td>
<td>5.1</td>
<td>3.3-6.1</td>
<td>6.9-8.5%</td>
</tr>
<tr>
<td>OP<sub>1dB</sub>, dBm</td>
<td>15.5<sup>a</sup></td>
<td>3</td>
<td>17.5</td>
<td>16.1-17.16<sup>a</sup></td>
<td>16-17.4</td>
</tr>
<tr>
<td>PAE at OP<sub>1dB</sub>%</td>
<td>3.2<sup>a</sup></td>
<td>2</td>
<td>2.1<sup>a</sup></td>
<td>2.3-3.0<sup>a</sup></td>
<td>4.7-6.4</td>
</tr>
<tr>
<td>Gain at OP<sub>1dB</sub></td>
<td>15.5<sup>a</sup></td>
<td>27<sup>a</sup></td>
<td>23.5<sup>a</sup></td>
<td>23.8-35.0<sup>a</sup></td>
<td>17.9-23.1</td>
</tr>
<tr>
<td>BW<sub>3dB</sub>, GHz</td>
<td>>25</td>
<td>26</td>
<td>18<sup>a</sup></td>
<td>53</td>
<td>>20.5</td>
</tr>
<tr>
<td>Size (mm<sup>2</sup>)</td>
<td>0.91</td>
<td>0.45</td>
<td>1.8</td>
<td>1.54</td>
<td>1.14</td>
</tr>
<tr>
<td>P_{DC} (mW)</td>
<td>1180</td>
<td>970</td>
<td>2620</td>
<td>1270</td>
<td>814</td>
</tr>
<tr>
<td>P_{sat}/Area mW/mm<sup>2</sup></td>
<td>69.2</td>
<td>28.2</td>
<td>77.9</td>
<td>50.6</td>
<td>62.1</td>
</tr>
<tr>
<td>OP<sub>1dB</sub> /Area mW/mm<sup>2</sup></td>
<td>39</td>
<td>28</td>
<td>31.2</td>
<td>33.8</td>
<td>48.2</td>
</tr>
<tr>
<td>Technology</td>
<td>130nm InP</td>
<td>250-nm InP HBT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This work shows a record PAE at OP_{1dB}
Summary

• Demonstration of record PAE at G-band
• Communication transmitter requires careful attention to the performance at OP$_{1\text{dB}}$
• Key features for highest efficiency at OP$_{1\text{dB}}$
 – Proper cell topology: Capacitively linearized common base
 – Higher OP$_{1\text{dB}}$, and PAE
 – Driver scaling sustains good PAE
• Compact and low loss transmission line network
Acknowledgement

• This work was supported in part by the Semiconductor Research Corporation and DARPA under the JUMP program.

• The authors thank Teledyne Scientific & Imaging for the IC fabrication.
Thank You
References

DC Bias Lines and Power Supply Oscillations

- Only two independent DC supplies -> reduce the bias complexity.
- One supply biases all stages’ collectors and the second biases the stages’ bases.
- There are many feedback loops -> potential stability problems.
- We noticed a potential oscillation problem at low frequencies (~GHz and lower) in earlier designs.
- The low frequency oscillations are not adequately modeled and does not show up in simulations.
- **In this design, we added many bypass capacitors with series resistors** to avoid out of band oscillations.
- There is no indication for oscillations.
Measurement accuracy

- The dynamic range of the power sweep is defined as follows:
 - The minimum input power: limited by the spectrum analyzer noise level.
 - Spectrum analyzer with reasonable noise levels shows smooth gain curves at low input power -> get accurate results to accurately report OP_{1dB}.
 - The maximum power: limited by the harmonic mixer saturation limit.
Measurement accuracy

• Probe losses are calibrated by through measurement.

• Old probes show non-50Ω impedance which degrades the output power.

• So, the probes may contribute to higher losses than the one measured in the through measurement.

• We did the measurement with an old probe pair, and we believe that the results could be improved by a newer one.