A compact H-band Power Amplifier with High Output Power

A. Ahmed¹,², U. Soylu², M. Seo³, M. Urteaga⁴, and M. Rodwell²

a_s_ahmed@ucsb.edu

¹Marki Microwave Inc., CA
²ECE, University of California, Santa Barbara, USA
³ECE, Sungkyunkwan University, South Korea
⁴Teledyne Scientific Company, Thousand Oaks, CA, USA
Outline

• Motivation for sub-THz frequencies.
• Prior work at H-band.
• Potential applications for the amplifier.
• Amplifier design
 – unit cell and low-loss compact combiner
• Measurement results
• Summary and conclusion
Motivation

- **Objective:** support high data rates.
- **Sub THz (~300GHz)**
 - More available spectrum -> high data rates.
 - Shorter λ: more channels for the same array size.
- **Main challenge:** high losses (path loss $P_R \alpha \frac{\lambda^2}{R^2} e^{-\alpha R}$ + interconnect)
- **Solution:**
 - Phased arrays increase the directivity, the transmission range.
 - Use III-V technologies to produce more output power per element.

$$\frac{P_{\text{received}}}{P_{\text{trans}}} = \left(\frac{D_t D_r}{16\pi^2} \right) (\lambda / R)^2$$
Prior Work at H-band

• CMOS shows \(-3.9\) dBm at 257GHz [1].
• III-V technologies show better performance, though power and efficiency are still low.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq, GHz</td>
<td>257</td>
<td>240</td>
<td>185-255</td>
<td>265</td>
<td>325</td>
<td>275-320</td>
<td>338</td>
<td>300-305</td>
<td>300</td>
<td>290-307.5</td>
<td>301</td>
</tr>
<tr>
<td>P_{sat}, dBm</td>
<td>-3.9</td>
<td>>10.8</td>
<td>20-23.9</td>
<td>17.2</td>
<td>11.3</td>
<td>2.7-4.8</td>
<td>10</td>
<td>9.5-9.8</td>
<td>8</td>
<td>7.8-10</td>
<td>13.5</td>
</tr>
<tr>
<td>PAE at $P_{\text{sat}}%$</td>
<td>1.35</td>
<td>5</td>
<td>4.1</td>
<td>0.95</td>
<td>1.1</td>
<td>2.3</td>
<td>1.8</td>
<td>1.1</td>
<td>2.97</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Technology</td>
<td>65nm CMOS</td>
<td>35 nm GaAs mHEMT</td>
<td>250-nm InP HBT</td>
<td>130-nm InP HBT</td>
<td>35 nm InAlAs/InGaAs</td>
<td>50 nm InP HEMT</td>
<td>250-nm InP HBT</td>
<td>35 nm InGaAs mHEMT</td>
<td>250-nm InP HBT</td>
<td>250-nm InP HBT</td>
<td>35 nm InGaAs mHEMT</td>
</tr>
</tbody>
</table>

• Compact, low –loss combiner and high-efficiency power cell -> increase the efficiency and $P_{\text{sat}}/\text{area}$.
This Work and Potential Applications

• Target ~ 17dBm output power with 4%PAE.
• \(P_{\text{out}} \approx 17\text{dBm} \) output power per element extends the link range to ~50m* (8x8 array, vertical and horizontal beam angles=7\(^{\circ}\))*
• Candidate PA for subTHz transmitters for long-range applications
• Drivers could be designed in InP or low-cost technologies.

• Measuring equipment->boost the output power of the sources.

*https://web.ece.ucsb.edu/Faculty/rodwell/Classes/ece218c/ECE218c.htm
250nm InP HBT Process, Teledyne [12]

- subTHz amplifier requires fast technologies.
- $f_{\text{max}} = 650\text{GHz}$.
- $BV_{\text{CEO}} = 4.5\text{V}$.
- $J_{\text{max}} = 3\text{mA/µm}$.
- Four Au interconnect.
- MIM cap (0.3fF/µm2).
- TFR (50Ω/square).
Power Amplifier Design

- Four-stage amplifier.
- Combine four power cells.
- Driver scaling sustains good PAE.

- Power combining techniques
 - Parallel combining: 4:1 transmission line combiner.
 - Series combiner: stacked unit cell.

Chip micrograph of the amplifier

Block diagram of the amplifier
Unit Cell Comparison

- Comparison between CE, grounded CB and CB with base capacitor
- Simulation under same bias condition
- Large signal simulation is more relevant in power amplifier
- CB with base capacitor shows the highest $\text{OP}_{1\text{dB}}$ with associated PAE
- Design is still challenging.

<table>
<thead>
<tr>
<th></th>
<th>Gain*, dB</th>
<th>PAE @ $\text{OP}_{1\text{dB}}$**</th>
<th>$\text{OP}_{1\text{dB}}$, dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>4.9</td>
<td>13.6</td>
<td>13.1</td>
</tr>
<tr>
<td>Grounded CB</td>
<td>10.8</td>
<td>8.4</td>
<td>9.6</td>
</tr>
<tr>
<td>CB with 208f cap</td>
<td>5.6</td>
<td>16</td>
<td>13.7</td>
</tr>
</tbody>
</table>

*under opt load line condition without compression

At 270GHz

P_{out}, gain, and PAE for CE, grounded CB, and CB with base capacitor.
Unit Cell Design

- Shunt inductor: tunes the transistor parasitics.
- The cell requires resistive load impedance (~18Ω).
- Base capacitance is significantly reduced (~208fF).
 - Lower parasitic inductance → higher self resonance frequency.
 - Avoid gain uncertainty and stability problems.

![Schematic of the unit cell](image)

ZL~18Ω

- tuning cap
- series tuning
- shunt tuning
- bias line
- Bypass cap

Schematic of the unit cell
Combiner Design

• Wilkinson
 – Two $\lambda/4$ sections -> Bulky
 – High loss and skinny line
 – Works only with 50Ω cells
 – Higher BW

• Proposed combiner
 – Single $\lambda/4$ section -> very compact
 – Low loss
 – Works with non 50Ω cells
 – Smaller BW compared to Wilkinson
Combiner Design

- Low loss 4:1 transmission line combiner.
- Transforms 50Ω to the required loadline impedance for each cell using a single \(\lambda/4\) transmission line.
- Each two cells are combined by a TL with negligible electrical length.
- The required impedance for the two combined cells is 18/2Ω.
- The quarter line’s impedance is chosen to transform 100Ω to 18/2Ω.

Chip micrograph of the proposed combiner
Measurement Results: s-parameters

- Setup: PNA with 220-325GHz Oleson extender modules.
- Measured 3-dB bandwidth=48GHz.

<table>
<thead>
<tr>
<th>V_{CCPA}</th>
<th>V_{BBPA}</th>
<th>V_{CCdriver}</th>
<th>V_{BBdriver}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2V</td>
<td>2.3V</td>
<td>2.5V</td>
<td>2.1V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_{CCPA}</th>
<th>I_{BBPA}</th>
<th>I_{CCdriver}</th>
<th>I_{BBdriver}</th>
</tr>
</thead>
<tbody>
<tr>
<td>172mA</td>
<td>9.4mA</td>
<td>275.5mA</td>
<td>14.8mA</td>
</tr>
</tbody>
</table>
Power Measurement: setup

- 110-170GHz VDI+ doupler -> 270-290GHz -> coupler
- Input power is sensed by the coupler and monitored by the spectrum analyzer
- Power is varied by changing the signal generator power.

![Diagram of Power Measurement Setup]
Calibration phase

- Correction factor = power difference between the power meter and spectrum analyzer readings.
Measurement Phase

- Sweep the signal generator power.
- Report the spectrum analyzer readings + correction factors = input power.
- Report the power meter reading.
- The power meter readings + probe losses = amplifier output power
Many points are recorded at different frequencies.

At 270GHz: $P_{\text{out}} = 16.8\text{dBm}$, 4\%PAE

No heatsink was used.

Better performance is expected with proper heatsinking.

Table

<table>
<thead>
<tr>
<th>V_{CCPA}</th>
<th>V_{BBPA}</th>
<th>V_{CCdriver}</th>
<th>V_{BBdriver}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2V</td>
<td>2.5V</td>
<td>2.4V</td>
<td>2.2V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_{CCPA}</th>
<th>I_{BBPA}</th>
<th>I_{CCdriver}</th>
<th>I_{BBdriver}</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.3mA</td>
<td>10.8mA</td>
<td>274.8mA</td>
<td>16.2mA</td>
</tr>
</tbody>
</table>
Power Measurement Results

- More points are taken at different frequencies.
- \(P_{\text{sat}} = 14 - 16.8 \text{dB}_m \), with \(\text{PAE} = 2.2 - 4\% \) over 266-285GHz.

Measured \(P_{\text{out}} \) vs \(\text{Pin} \) at various frequencies.

Measured \(P_{\text{out}} \) with the associated PAE and gain vs. frequency reported at the peak PAE.
State-of-the-art results

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq, GHz</td>
<td>240</td>
<td>185-255</td>
<td>265</td>
<td>325</td>
<td>275-320</td>
<td>338</td>
<td>300-305</td>
<td>300</td>
<td>290-307.5</td>
<td>301</td>
</tr>
<tr>
<td>P_{sat}, dBm</td>
<td>>10.8</td>
<td>20-23.9</td>
<td>17.2</td>
<td>11.3</td>
<td>2.7-4.8</td>
<td>10</td>
<td>9.5-9.8</td>
<td>8</td>
<td>7.8-10</td>
<td>13.5</td>
</tr>
<tr>
<td>Gain at P_{sat} dB</td>
<td>15</td>
<td>12.2-17</td>
<td>11.7</td>
<td>9.4</td>
<td>13.5-15</td>
<td>3.3</td>
<td>7.5-7.8</td>
<td>11</td>
<td>10-12</td>
<td>11.8</td>
</tr>
<tr>
<td>PAE at P_{sat} %</td>
<td>5</td>
<td>4.1</td>
<td>0.95</td>
<td>1.1</td>
<td>2.3</td>
<td>1.8</td>
<td>1.1</td>
<td>2.97</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>BW_{3dB}, GHz</td>
<td>55</td>
<td>53c</td>
<td>9</td>
<td>~100c</td>
<td>10</td>
<td>40</td>
<td>57</td>
<td>21</td>
<td>15c</td>
<td>48c</td>
</tr>
<tr>
<td>Chip Size (mmxmm)</td>
<td>1.5x0.75</td>
<td>2.14x1.58</td>
<td>0.98x1</td>
<td>0.5x1.35</td>
<td>2x0.75</td>
<td>0.55x0.5</td>
<td>5b</td>
<td>2x0.75</td>
<td>1.45x0.44</td>
<td>0.67x0.68</td>
</tr>
<tr>
<td>P_{DC} (W)</td>
<td>-</td>
<td>5.24</td>
<td>1.12</td>
<td>0.129d</td>
<td>0.29</td>
<td>0.72</td>
<td>0.2</td>
<td>0.85</td>
<td>1.49</td>
<td>-</td>
</tr>
<tr>
<td>P_{sat}/Area mW/mm²</td>
<td>10.6</td>
<td>72.5</td>
<td>15.7</td>
<td>13.9</td>
<td>4.5</td>
<td>6.66</td>
<td>31.6</td>
<td>4.2</td>
<td>15.7</td>
<td>22.3</td>
</tr>
<tr>
<td>Technology</td>
<td>35 nm GaAs mHEMT</td>
<td>250-nm InP HBT</td>
<td>130-nm InP HBT</td>
<td>35 nm InAlAs/InGaAs</td>
<td>50 nm InP HEMT</td>
<td>250-nm InP HBT</td>
<td>35 nm InGaAs mHEMT</td>
<td>35 nm InGaAs mHEMT</td>
<td>250-nm InP HBT</td>
<td>250-nm InP HBT</td>
</tr>
</tbody>
</table>

- This work shows a record P_{sat}/mm^2 over 266-285GHz frequency range.
Summary

- Record P_{sat}/area at H-band
- Common base cell with finite base impedance shows a good performance at subTHz frequency.
- Transmission line combiner are compact and have low losses
- Careful EM simulation is necessary to get accurate results
- Millimeter wave communication becomes more feasible.
Acknowledgement

- This work was supported in part by the Semiconductor Research Corporation and DARPA under the JUMP program.

- The authors thank Teledyne Scientific & Imaging for the IC fabrication.
Thank You
References

More Details: power amplifier family

- Record output power and efficiency (125-285GHz)

[13] 140GHz, 20.5dBm, 20.8% PAE

[14] 130GHz, 200mW, 17.8%PAE

[15] 194GHz, 17.4dBm, 8.5%PAE

This work

• Record output power and efficiency in the frequency range of 125-285GHz.