

D-band CMOS+InP and CMOS-only MIMO communication transceiver technologies

Mark Rodwell University of California, Santa Barbara Rodwell@ece.ucsb.edu

Acknowledgments

Collaborators (ComSenTer): Debdeep Jena, Alyosha Molnar, Christoph Studer, Huili Xing: Cornell University Muhannad Bakir: Georgia Tech Sundeep Rangan: New York University Amin Arbabian, Srabanti Chowdhury: Stanford Elad Alon, Ali Niknejad, Borivoje Nikolic : University of California, Berkeley Danijela Cabric, Tim Fisher: University of California, Los Angeles Andrew Kummel, Gabriel Rebeiz: University of California, San Diego Jim Buckwalter, Upamanyu Madhow, Umesh Mishra, Mark Rodwell, Susanne Stemmer: University of California, Santa Barbara Andreas Molisch: University of Southern California

Collaborators: (Samsung) Gary Xu, Navneet Sharma, Will Choi, Eunyoung Seok. (PiRadio) Aditya Dhananjay

Co-Authors:

At UCSB: Ali Farid, Ahmed A.S. Ahmed, Utku Solyu, Amirreza Alizadeh, Navid Hosseinzadeh, Seungchan Lee Beyond UCSB: Prof. <u>Munkyo Seo</u>, Sungkyunkwan Univ.

Sponsors: Semiconductor Research Corporation JUMP Program (Tim Green, Todd Younkin).

Analog Devices, ARM, DARPA, EMD Performance Materials, IBM, Intel, Lockheed-Martin, Micron, NIST, Northrop-Grumman, NSF, Raytheon, Samsung, SK hynix, TSMC.

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.

14/02/2022

Benefits of Short Wavelengths

Communications: Massive spatial multiplexing, massive # of parallel channels. Also, more spectrum.

MIMO array

MIMO arrays on each

Imaging: very fine angular resolution

 $N \propto L / \lambda$

But:

MIMC

 $N \propto L^2 / \frac{\lambda R}{\lambda R}$

High losses in foul or humid weather. High λ^2/R^2 path losses. ICs: poorer PAs & LNAs. Beams easily blocked.

 $N \propto L^4 / \frac{\lambda^2}{\lambda^2} R^2$

100-300GHz wireless: terabit capacity, short range, highly intermittent

140GHz moderate-MIMO hub

If hub uses 32-element array (four 1×8 modules):

16 users/array. P_{1dB}=21 dB_m PAs, F=8dB LNAs 1,10 Gb/s/beam→ 16, 160 Gb/s total capacity 70, 40 m range in 50mm/hr rain with 17dB total margins

Handset: 8 × 8 array (9×9mm)

70 GHz spatially multiplexed base station

If we use instead a 70GHz carrier, the range increases to **70 meters** (vs. **40 meters**) but the handset becomes 16mm×16mm (vs. 8mm×8mm), and the hub array becomes 19mm×612mm (vs. 10mm×328mm)

Or, use a 4×4 (8mm×8mm) handset array, and the range becomes ..**about 40 meters**.

Same handset area (more handset elements)→ same link budget Easier to obtain license for 140±2.5GHz than 70±2.5GHz

210 GHz, 640 Gb/s MIMO Backhaul

8-element MIMO array

2.1 m baseline.
80Gb/s/subarray → 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

Key link parameters

500 meters range in 50 mm/hr rain; 23 dB/km 20 dB total margins:

packaging loss, obstruction, operating, design, aging PAs: 18dBm = P_{1dB} (per element) LNAs: 6dB noise figure

75 GHz, 640 Gb/s MIMO backhaul (16QAM)

Why not use a lower-frequency carrier, e.g. 75 GHz ?

Must use at least 16QAM, given 80Gb/s/channel...

8-element 640Gb/s linear array: requires 16dB_m transmit power/element (P_{out}) requires 3.5m linear array

Similar RF power output, physically larger

Systems Design

MIMO System Design

ADCs/DACs¹: QPSK needs only 3-4 bit ADC/DACs N ADC bits, M antennas, K signals: $SNR=6N+1.76+10 \cdot \log_{10}(M/K)$ 3 bits, (M/K)=2→ SNR=23 dB. QPSK needs 9.8 dB.

Linearity¹: Amplifier P_{1dB} need be only 4 dB above average power

Phase noise^{2,3}: Requirements same as for SISO

Efficient digital beamforming^{4,5}: beamspace algorithm=complexity ~N× log(N)

Efficient VLSI digital beamformer implementation⁶: low-resolution matrix

Efficient beamforming in broadband arrays⁷: combined spatial & temporal FFTs.

M. Abdelghany et al, IEEE Trans. Wireless Comm, Sept. 2021
 M. E. Rasekh et al, IEEE Trans. Wireless Comm, Oct. 2021

- 2) IVI. E. RASEKITEL AL, IEEE ITANS. WITCHESS COMM, UCL. 20
- 3) A. Puglielli et al, 2016 IEEE ICC
- 4) M. Abdelghany, et. al, , 2019 IEEE SPAWC
- 5) S. H. Mirfarshbafan et al, IEEE Trans CAS 1, 2020
- 6) O Castañeda Fernández et. al, 2021 ESSCIRC
- 7) M. Abdelghany et al 2019 IEEE GLOBECOM

100-300 GHz IC design: Transistors

Transistors for 100-300GHz

CMOS: good power & noise up to ~150GHz. Not much beyond. 65-32nm nodes are best.

InP HBT: record 100-300GHz PAs

SiGe HBT: out-performs CMOS above 200GHz

GaN HEMT: record power below 100GHz. Bandwidth improving

InGaAs-channel HEMT: world's best low-noise amplifiers Power

100-300 GHz IC design: Low-noise amplifiers

LNA design: noise close to transistor limits

1) Goal: low noise measure, not noise figure

F = noise figure, M = noise measure

2) Find bias current density for lowest noise measure

3) Minimum M is independent of circuit configuration*; pick for high bandwidth or high gain/stage (= low P_{DC})

- <-- all give the same minimum M...
- ...but common-base gives highest gain (InP HBT @210GHz).

*HA Haus, RB Adler, Proceedings of the IRE, 1958

4) Capacitance in common-base; just like inductance in common-emitter, allows simultaneous tuning for zero reflection coefficient and minimum M

5) Write ADS Python code to display source impedance for minimum M.

6) Scale transistor size to eliminate series tuning element. Less input tuning→ less noise from passive element loss.

Result: 7.2-7.4dB LNA noise given 6.6dB transistor F_{cascade}.

100-300 GHz IC design: Power amplifiers

100-300GHz Power combining: what is best

Direct series-connected

M. Shifrin: 1992 IEEE μWave/mmWave Monolithic Circuits Symp. (Raytheon)

Cascaded combining

A. Ahmed 2018 EuMIC, 2021 RFIC (UCSB)

Distributed Active Transformer

I. Aoki, IEEE Trans MTT, Jan. 2002 (CalTech)

Balun series-connected

 $\lambda/4$ baluns: Y. Yoshihara, 2008 IEEE Asian Solid-State Circuits Conference (Toshiba) sub- $\lambda/4$ baluns: H. Park, et al, IEEE JSSC, Oct. 2014 (UCSB)

470mW, 81GHz, 23.4% PAE

Transistor stacking. Why ? Why not ?

Cascade combining as stacking plus matching

Capacitively degenerated common-base

How does this differ from stacking?

Generalized cascade combining

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

Cascade Combining: Why ? Why not ?

$ \begin{array}{c} \leftarrow I \land \downarrow \\ W_{g} & V \land \downarrow \\ \hline \\$	$MI \stackrel{\text{MW}_g}{\longrightarrow} MW_g \stackrel{\text{MW}_$	$R_L = Z_0$ $P = M^2 IV$							
•	Lower frequencies	Higher frequencies							
Corporate combining	length $\propto 1/f \rightarrow$ large die area X dB loss $\propto 1/\sqrt{f} \rightarrow$ high loss X	length $\propto 1/f \rightarrow$ small die area \checkmark dB loss $\propto 1/\sqrt{f} \rightarrow$ low loss \checkmark							
Series-connected	more transistor fingers per cell $ ightarrow$ ok \checkmark	more transistor fingers per cell \rightarrow parasitics X							
Cascade combining	large interstage matching networks X	small interstage matching networks \checkmark small # transistor fingers per cell \rightarrow ok \checkmark cascade cell pass-though losses X							

Recent high-efficiency 100-300GHz PAs

Teledyne 250nm InP HBT technology

Ahmed et al, 2020 IMS, 2020 EuMIC, 2021 IMS, 2021 RFIC

140GHz, 20.5dBm, 20.8% PAE

130GHz, 200mW, 17.8% PAE

266GHz, 16.8dBm, 4.0% PAE

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

ICs and Modules: 140 GHz

Do we need 2D arrays ? 1D might be fine.

building

building

1/sin² ♦ sidelobes provide strong signals to tall buildings.
Providing sidelobes reduces broadside gain by less than 3dB.
→ Don't need 2D arrays to serve tall buildings

2D vs. 1D: user spatial distribution

Spatial distribution of users, and of scattering objects, guides choice of array geometry.

14/02/2022

140GHz hub: packaging challenges

IC-package interconnects Difficult at > 100 GHz

Removing heat Thermal vias are marginal

Interconnect density

Dense wiring for DC, LO, IF, control. Hard to fit these all in.

Economies of scale

Advanced packaging standards require sophisticated tools High-volume orders only Hard for small-volume orders (research, universities) Packaging industry is moving offshore

100-300GHz IC-package connections

135GHz 8-channel MIMO hub array tile modules

Receiver: A. Farid et. al, 2021 IEEE BCICTS; Transmitter in review

140GHz hub: ICs & Antennas nited in Microwaves 110mW InP Power Amplifier LTCC Array module **CMOS Transmitter IC** 20.8% PAE 22nm SOI CMOS. **Receiver IC 190mW InP Power Amplifier** LTCC lower 22nm SOI CMOS. 16.7% PAE two planes heatsink GlobalFoundries 22nm SOI CMOS 1 cm

Teledyne InP HBT

Kyocera

14/02/2022

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

www.eumw2021.com

Power amplifier IC

patch antennas

Si beamformer Cu stud bonds CPW-ustrip transition

wire bond

135 GHz Cu stud CMOS / LTCC transition

otal height

-0.5um

3mil

3mil

3mil

50 μ m diameter Cu studs

1.15 dB simulated loss

Includes Cu pillar, 220 µm CPW section

~0.85 dB measured loss.

Ceramic

Low assembly yield with LTCC; too small

CMOS

Cu pi

Series-fed patch antenna on LTCC

Angle from Broadside (degree)

14/02/2022

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

32

CMOS/InP PA transition design

Au wirebonds: poor but easily obtained

150 μm long, 25 μm diameterGround return: through IC TSV's2.6dB simulated insertion loss

Ribbon bonds, flip-chip bonds: harder to get.

both much better at 140 GHz InP flip-chip bonds: ~\$80k per MPW run investigating firms for ribbon-bonding

InP PA/antenna transition design

8-element series-fed patch antenna

Antenna-PA match: stepped-impedance line

Simulations: 12dB antenna gain, 6GHz 3-dB bandwidth

8-element 135 GHz MIMO receiver array

4 channels/side

- 8-elements series fed-patch antenna/channel
- $0.65\,\lambda$ antenna spacing
- PCB provides I/Q, LO reference, DC connections

Receive module testing

Rx module connected to ZCU-111 for array calibration and beamforming.

Test transmitter mounted at 15cm distance on a rotating arm.

Wideband 1-GHz OFDM signal used for array calibration

https://github.com/pi-radio/Pi-Radio-v1-NRT

https://dl.acm.org/doi/abs/10.1145/3411276.3412195

Conversion gain, radiation pattern

8 working channels: good patterns Poor ground: limits data rate 4 working channels: patterns with sidelobes

good ground: data transmission experiments

135GHz 8-channel MIMO hub array tile modules

140GHz MIMO hub receiver array modules,

4-element, 8-element MIMO beamforming Data transmission up to 1.9Gb/s

140GHz MIMO hub transmitter array modules,

8-element 38.5dBm EIRP Data transmission up to 1.9Gb/s Performance limited by assembly yield. Data rate limited by connector.

Link demonstration to be reported

Teledyne 250nm InP HBT

CMOS TX, RX ICs GlobalFoundries 22nm SOI CMOS.

Receiver: A. Farid, 2021 BCICTS; Transmitter: in review

Gen-II 140GHz MIMO hub modules

Gen I 140 GHz CMOS+InP modules

low assembly yield: 50 μ m Cu stud too small for LTCC used in Samsung link demo; to be announced.

Gen II 140 GHz CMOS+InP modules

change to C4 solder bonds: more easily assembled on LTCC ICs re-fabricated with C4 bonds LTCC carriers re-designed for C4 bonds PCB has higher-bandwidth baseband IQ connectors: 10Gb/s. Assembly planned in Winter 2022.

140 GHz C4-LTCC Transition Design

Simulated 1.3 dB insertion loss at 140 GHz.

C4 has better assembly yield with LTCC than 50 μm Cu studs

140 GHz IF Beamforming Phased-Array Transmitter

Siwei Li, 2021 IEEE IMS: Rebeiz Group, UCSD

Pout: 3.5dBm /6dB BO			Pout: 1.5dBm /8dB BO																			
	40	ib/	s	16 Gb/s		6 Gb/s						21 Gb/s										
•				*			ŵ	3 5							8 0	0	•	0 4	:		0.	
					•	٠					:	•	:		b 	0 0	•					
		•	•		•	4	*			• •			*	9 8	4 0			* ?				•
*	•	•	•	+	٠	*		8	•	9	•	•		20	0	0	•			• •	5	4 9
4.1%			5.6%				3.9%						5.1%									

Beamspace digital beamformer IC

All-digital receive beamformer ASIC in 65nm CMOS

Beamspace algorithm

Supports 32 antennas and 1 to 16 users

20GB/s throughput given 16 simultaneously transmitting users under conditions requiring 3-bit ADC resolution

Record 9.98GB/s throughput given 16 simultaneously transmitting users under conditions requiring 6-bit ADC resolution

Castaneda Fernandez 2021 ESSCIRC. Studer Group, Cornell/ETHZ Molnar Group, Cornell

ICs and Modules: 210 GHz & 280 GHz

210 GHz Transmitter and Receiver ICs

M. Seo et al, 2021 IMS; Teledyne 250nm InP HBT

č

LO multiplier: 25 GHz to 200 GHz

M. Seo et al, 2021 IMS; Teledyne 250nm InP HBT

multiplier design by M. Seo

P_{out} > -5 dBm over 165 - 240 GHz Spurious < -40 dBc over 180-230 GHz P_{DC} = 282 mW 0.58 mm x 0.4 mm

280GHz transmitter, receiver IC designs

Solyu, Alz, Ahmed, Seo; UCSB/Sungkyunkwan Teledyne 250nm InP HBT technology

Receiver

Transmitter

simulations: 11dB noise figure, 40GHz bandwidth

simulations: 17dB saturated output power.

Application: point-point MIMO backhaul links

210, 280 GHz MIMO backhaul modules

Single-channel modules (simplicity) 210 GHz InP TX, RX ICs 2x2 patch antenna feed on fused silica substrate Primary antenna: 200 mm Teflon lens Assembly: 200 GHz ribbon bonds, low-frequency ball-bonds 280 GHz modules will be similar

100-300GHz Wireless

100-300GHz Wireless

Massive capacities

large available bandwidths <u>massive spatial multiplexing</u> in base stations and point-point links

Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

IC Technology

All-CMOS for short ranges below 200 GHz. SiGe or III-V LNAs and PAs for longer-range links. Just like cell phones today SiGe or III-V frequency extenders for **20**0GHz and beyond

The challenges

digital beamformer computational complexity packaging: fitting signal channels in very small areas mesh networking to accommodate beam blockage driving the technologies to low cost

Backup slides

1D or 2D subarray for backhaul ?

Should we use 4x4 array, 1x16, or 16x1 array ? All provide same system link budget, same # RF channels, same angular scanning range.

Normal & inverted microstrip

Normal: PAs, LNAs smaller skin-effect losses ✓ ground-plane holes at transistors X

266GHz, 16.8dBm PA: A. Ahmed et. al, 2021 IMS

Inverted: high-density blocks (mixers, phase shifters,...)

higher skin-effect losses X no ground-plane breaks: better ground integrity

529GHz dynamic divider: M. Seo et al, IEICE Electronics Express, Feb. 2015

gain

52

(gain in PAs, LNAs is less than MAG/MSG, U, ...)

die area, power,

Need reasonable gain/stage.

accumulated gain compression

Receivers need:

14/02/2022

Transmitters need:

high power-added efficiency $PAE = (P_{out} - P_{in})/P_{DC}$ high added power density $(P_{out}-P_{in})/(\text{gate width}, \text{emitter length})$

low cascaded noise $F_{casc} = F + (F-1)/G + (F-1)/G^2 + \cdots$

100-300GHz wireless: transistor requirements

< gain

powe

baseband processor

Where the IC designer can't help

mm-wave transistor gain is low: gain-boosting is common

Common-source vs. common-gate.

Capacitive neutralization. Unconditionally stable positive feedback (Singhakowinta, Int. J. Electronics, 1966)

Such circuits don't improve the parameters that matter the most.

The circuit* doesn't change the transistor minimum cascaded noise figure. (Haus, Adler, Proc. IRE, 1958)

The circuit* doesn't change the transistor maximum efficiency vs. added power curve.

Low-Loss 100-300GHz Corporate Combining

Wilkinson trees are lossy:

Signal passes through *many* 70.7 Ω , $\lambda/4$ lines. $\lambda/4$ lines are long.

70.7 Ω lines are narrow...and lossy \rightarrow High loss.

Single-($\lambda/4$) combiners are much less lossy Each design uses a single *effective* $\lambda/4$ section. Shorter lines, low-Z_o lines \rightarrow lower loss But, low loss only if transistor cells fit.

Denser Integration: higher PAE at high Power

Compact multi-finger transistor layouts

- \rightarrow Shorter combiner lines
- \rightarrow Less loss
- \rightarrow Higher PAE.

Series combining using sub- $\lambda/4$ baluns

81GHz, 17 dB Gain 470 mW P_{sat}, 23% PAE Teledyne 250 nm InP HBT 2 stages, 1.0 mm²(incl pads) $\lambda/4$ baluns: Y. Yoshihara, 2008 IEEE Asian Solid-State Circuits Conference (Toshiba) sub- $\lambda/4$ baluns: H. Park, et al, IEEE JSSC, Oct. 2014 (UCSB)

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

Sub- $\lambda/4$ Balun Combiners. Why ? Why not ?

	Lower frequencies	Higher frequencies
Corporate combining	length $\propto 1/f \rightarrow$ large die area X dB loss $\propto 1/\sqrt{f} \rightarrow$ high loss X	length $\propto 1/f \rightarrow$ small die area \checkmark dB loss $\propto 1/\sqrt{f} \rightarrow$ low loss \checkmark
Sub-λ/4 Balun	more transistor fingers per cell $ ightarrow$ ok \checkmark	more transistor fingers per cell→ parasitics X impedance shift of transistor-balun interconnect X

On-Wafer Interconnect Losses

Interconnects in packages and on PCBs:

 $H \propto 1/\text{frequency}$ (to control radiation loss) loss (dB/mm) $\propto (\text{frequency})^{3/2}$ loss (dB/wavelength) $\propto \sqrt{\text{frequency}}$

Interconnects in ICs:

H is independent of frequency

loss (dB/mm) $\propto \sqrt{\text{frequency}}$

loss (dB/wavelength) $\propto 1/\sqrt{\text{frequency}}$

Current density, finger pitch limit cell output power

Electrode *RC* charging time \propto (finger length)² Maximum finger length $\propto 1/\sqrt{\text{frequency}}$ Current per finger $\propto 1/\sqrt{\text{frequency}}$

base metal resistant base metal resistant collector

Maximum cell width $\propto 1/$ frequency Maximum number fingers $\propto 1/$ frequency Maximum current per cell $\propto 1/$ frequency^{3/2}

Maximum RF power per cell \propto (maximum load resistance) (maximum current)² \propto 1/(frequency)³

Compare to Johnson F.O.M.: maximum power per cell \propto (maximum voltage)²/(minimum load resistance) $\propto 1/(\text{frequency})^2$

14/02/2022

WMO2: Advances in Circuits and Systems for mmWave Radar and Communication in Silicon Technologies

Current density, finger pitch limit cell output power

High $V_{\rm br}$, low $I_{\rm max}$? Device sized to drive 50 Ω might approach $\lambda_{\rm g}/4$ width. Small finger pitch is critical; limited by thermal design

250nm InP HBTs: 650GHz *f*_{max}, **4.5V**. MAG/MSG 35 Z. Griffith et al, 2007 IPRM conference (UCSB) 30 -25 (dB) 20-15-(mA/μm²) 9 ∞ 6 M. Urteaga, et al, IEEE Proceedings June 2017 (Teledyne) 80 GHz 2 3 V_{ce} (V) 10^{12} 10¹⁰ 10^{1} Frequency (Hz)

Summary: InP transistors & ICs

INP HEMTs: 1.5THz f_{max} , 1.0THz amplifiers

204 GHz static frequency divider Z. Griffith et al, 2010 IEEE CSICS

1.0 kA/cm

