length and 4um drain-to-source spacing is shown in Fig. 3. This
results in a breakdown voltage of ~10V for 1 mA/mm gate cur-
rent density, which is very suitable for power applications. Fig. 4
shows a typical I-V curve for 0.5pum gate length and a 2.5pum
source drain spacing device. The gate bias ranges from -8 to 1V.
The device demonstrates good pinch-off voltage characteristics.
This allows good isolating buffer growth on silicon substrate.
Moreover, the drain current density is > 100mA/mm at V,; = 1V
and ¥V, = 30V. This high drain-to-source voltage is also very
appropriate for power applications. Finally, an extrinsic transcon-
ductance G,, > 30mS/mm at V', = 20V can be observed in Fig. 5,
which confirms the good pinch-off characteristic.
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Conclusion: The first GaN MESFETs on (111) Si substrates have
been realised using low-pressure metal-organic vapour phase epi-
taxy. The devices demonstrate good pinch-off voltage characteris-
tics and high breakdown voltage in diode and transistor
configuration. This good holding voltage and the possibility of
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realising an isolating buffer on silicon substrate mean that GaN
MESFETs on Si (111) are of particular interest in respect of
future power devices and wireless communication applications.
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Transferred-substrate InP/InGaAs/InP
double heterojunction bipolar transistors
with £, = 425 GHz

S. Lee, H.J. Kim, M. Urteaga, S. Krishnan, Y. Wei,
M. DahlstroOm and M. Rodwell

InP/InGaAs/InP  double heterojunction bipolar transistors
(DHBTs) with f,,, = 425GHz and f; = 141GHz using
transferred-substrate technology are reported. This is the highest
reported f,,,, for a DHBT. The breakdown voltage BV g, is 8V
at Jo = 5 x 10* A/em? and the DC current gain B is 43.

Introduction: Very wide bandwidth double heterojunction bipolar
transistors (DHBTS) enables high-power amplifiers at 94 and
180 GHz, microwave analogue digital converters, microwave direct
digital frequency synthesis, fibre optic transmission at > 40 Gbit/s
and wireless data networks at frequencies above 100GHz [1].
Transferred substrate single heterojunction bipolar transistors
(SHBTS) have demonstrated very high bandwidth and are poten-
tial candidates for very high-speed integrated circuit applications
[2, 3]. The transferred substrate SHBTs, however, have very low
breakdown voltage, BVpo = 1.5V. In this Letter we report an
InP/InGaAs/InP transferred substrate DHBT with record f,,,,, and
a high breakdown voltage, BVcgo = 8V at Jo = 5 x 10* A/em?.
Extrapolating at 20dB/decade, the power gain cutoff frequency
Smax = 425GHz and the current gain cutoff frequency f; =
141 GHz. The record f,,,, is due to the scaling of HBT junction

~ widths and the elimination of collector series resistance through

the use of a Schottky collector contact.

Experiment: Table 1 shows the MBE-grown layer structure. As
heat was removed through the emitter, a thin 300 A InGaAs emit-
ter contact layer was used to improve thermal conductivity. We
used compositionally-graded InGaAs/InAlAs layers at each inter-
face between the InGaAs base and the InP emitter and collector.
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The base layer is 400 A thick and is Be-doped at 4 x 102%m3. To
reduce the base transit time, we designed the base layer with
52meV bandgap grading, introduced by varying the Ga:In ratio.

Table 1: Layer structure of MBE-grown InP/InGaAs/InP DHBT

Layer Material Doping Thickness
A
Emitter cap InGaAs 1x 10" : 8i 300
Grade InGaAs/InAlAs 1 x 10%9: Si 200
N** emitter InP 1x 109 8i 900
N emitter InP 8 x 1017 Si 300
Grade InGaAs/InAlAs 8 x 107 : Si 233
Grade InGaAs/InAlAs 8 x 10'7 : Be 67
Base InGaAs 4% 109 : Be 400
Grade InGaAs/InAlAs 1 x 1016 §j 480
Delta doping InP 1.6 x 1018 : Si 20
Collector InP 1 x 106 : Si 2500

The 0.5 x 8§um? emitter contact metal was defined by optical
projection lithography. The emitter-base mesa was formed by
selective wet etching and nonselective citric-based wet etching.
Selective wet etching was used for base mesa isolation. Subsequent
steps were similar to the transferred substrate HBT process [3].
The 1.2 x 8.75um? Schottky collector contact was made on a
3000A thick InP collector layer after removing the S.I. InP sub-
strate.

7

0 L L L L 1 )
2

Veg: V
o
Fig. 1 Common emitter DC characteristics of 0.5 X 8um?® emitter
device
I, step = 30puA
BVcpo =8V at Jo = 5 x 10* Alem?

Fig. 1 shows the common emitter DC characteristic. The
BVego =8V at Jo = 5 x 10* A/em? and the DC current gain B =
43. The devices were characterised by on-wafer network analysis
from 1 to 45GHz and 75 to 110 GHz. With high f,,,, HBTs, C, is
low, resulting in a low reverse transmission Sj,. Small measure-
ment errors in Sy, arising from parasitic probe-probe electromag-
netic coupling then result in significant measurement errors in
determination of the transistor C,, and f,,,,. To obtain accurate
measurements, the network analyser was calibrated with on-wafer
line-reflect-line (LRL) microstrip calibration standards. Reference
planes are offset from the probe pads by 230 um, resulting in a
minimum 460um probe-probe separation, and reduced probe-
probe coupling.

The cutoff frequencies f; = 139 GHz and f,,,. = 425GHz were
measured at /- = 4.5mA and Vg = 1.9V, as determined by a
least-squares fit to the data (Fig. 2). Fig. 3 shows the collector
current dependence on cutoff frequencies. The highest f, =
141 GHz was measured at I~ = 5.2mA and Vz = 1.9V. Due to
the offset on-wafer LRL calibration, the 45 MHz to 45 GHz data
is well-matched to the 75 to 110GHz data and gain slopes are
close to the expected ~20 dB/decade.

To further improve f,,,., a carbon doped base at > 10?%/cm3 can
be employed, improving both the base sheet and contact resist-
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ance. We ascribe the relatively low measured f; to current blocking
at the base-collector interface, and are presently investigating
improved heterojunction grading of the base-collector junction.
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Fig. 2 Small signal current and power gains against frequency charac-
teristics at Ic = 4.5mA and Vep = 1.9V
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Fig. 3 Variation of f and f,,,x with collector current at Veg = 1.9V

Conclusion: We have fabricated InP/InGaAs/InP DHBTs using
substrate transfer. The emitter and base mesa structure were
formed by wet etching techniques. The highest f,,. = 425GHz
was measured in a device with 0.5 x 8 um? emitter contact area.
These results demonstrate the promise of InP/InGaAs/InP trans-
ferred substrate DHBTS for high speed and high power applica-
tions.
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Analytical design of higher-order
differentiators using least-squares technique

G. Mollova and R. Unbehauen

New, simple analytic closed-form relations for least-squares
design of higher-order differentiators are presented. Using this
approach, solving a system of linear equations for fullband
differentiators is avoided. Numerical and graphical results are
given.

Introduction: Different methods have been proposed recently for
designing higher-order differentiators [1 — 4], e.g. the minimax
approach, the eigenfilter method, the least-squares technique. An
analytical least-squares solution for first-order differentiators has
been shown [5]. In this Letter we present new closed-form expres-
sions for least-squares design of arbitrary higher-order digital dif-
ferentiators. Fullband and non-fullband cases are considered.

odd k (N even) even k (N even)
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kS Eé)l_:_ngl_f_Jgng(N-ﬂm

(k+1)/2 (_s\[+n, 1-21, =1 & 'n
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=1 (n-1/2) Fe+1) n=
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Fig. 1 Fullband higher-order differentiators (®, = )

Higher-order differentiators: An ideal kth-order digital differentia-
tor (DD) has a frequency response H{e®) = D(w)e*™2, where
D(w) = (o/2m)* for 0 < < @, < m. Here , denotes the passband
edge frequency. A nonrecursive filter with an antisymmetrical
impulse response of length N [3, 4] can be used for the design of
odd-order differentiators with a frequency response:

H(ejw) — lw(w)ej(w/2—w(f\f—1)/2)
where the real-valued M(w) is

c(w) = { [sinw,sian,A.A,sin(¥w)]T N odd 3
N-1

[sin %w, sin %w, oy sin(Tw)}T N even
_ B, 5(2), ..., b((N - 1)/2)]F N odd
b= { %b(l),b(Q),..,,b(N/Q)]T Pl o @
and for even k&
clw) = [1, cosw, ..., cos( L] N odd
[cos 2w, cos %w, ...,cos(ﬂg—lw)]T N even
_ {[b(o),b(l), e (N =1)/2)]T N odd 6)
LB, b(2), ..., B(N/2))T N even

where the superscript 7" denotes the vector transpose operation.

Analytical expressions: The elements of Q and d are usually evalu-
ated by numerical integration. Here we show that a closed-form
solution is also possible.

Relations for the entries of Q in the case of odd-order k are
identical to those for the first-order DD [5]. Applying the formula
given in [2], we obtain for the elements of d

1 (k+l)/2 lrwk_zl"'z cos nwpy
@nF = _1) 2l 1
+(__1)t+1 T1u1’f"2:rl sin nwy
d( ) N Odd,lSnS(fV—l}/’Z
n)=
(k+1)/2 h—2142 ¥
1 1\ cos(n—1/2)w
(2m)* lzl |:( 1)l (n—1/2)2-1 -
k=204 Gin(n_1/2)
() R }
N even,1<n < N/2
(7
where

r=klk—1)---(k—20+3)
ri=k(k—1)---(k—21+2)
andr=1forli=1

For fullband odd-order DD (®, = m, N even) we get simpler rela-
tions for the elements of d and Q which are shown in Fig. 1. By
this means solving the system of linear equations given in the pre-
vious Section is avoided. An exact formula for the vector b is
obtained (Fig. 1) and M{(w) can be directly calculated using
eqn. 1.

The elements of the matrix Q for even-order DD are derived as

2<I<(k+1)/2
1<i<(k+1)/2

“e[sinc(n 4 m — fwp + sinc(n — mjwy)]
n#m
Z2[1 + sinc(2n — fwp] n=m#0
Wp n=m=0
andf:OforO_<_n,m§N;1 N odd
f=1for1<n,m<N/2 N even
(8)

where sincx = sinx/x. Using the formula from [2] we obtain

q(n,m) =

(N-1)/2
b(n) sin nw N odd whtlsine nwp
M(w) =4 /5 1) A »
b(n)sin(n ~1/2)w N even 1s i1 hwp TP cos nw,
X bn)sin(n - 1/2) +ake 2| :
For the design of an even-order DD a linear-phase filter with sym- (1) hawk = sin nuw,
metric impulse response could be applied. In this case H(e®) = n2HL
M(w)e7™N-1"2, where Nodd, 1<n < (N=1)/2
k+1
(N—-1)/2 - e Nodd, n=0
b(n) cos nw N odd d(n) @)t k+1)
M) =9 nja @) R
b -1/2w N -
ngl (n) COS(n / )w even 1 k/2 I+1 hwh—2i+1 cos(n—1/2)w,
e & | ()T T
By minimising the mean-square error function Emse = (1/ =1
mfo? [D(®) — M(@)Pdw, a required higher-order DD can be (—1)H2 hyw® 2 sin(n—1/2)wp
designed. As a result we obtain a system of linear equations Qb = (n—172)3+1
d, where [3]: Q = J§? c(@)cT(w)do, d = [? D(w)c(w)do, and M(w)= N even,1<n<N/2
bZ¢(w). For the case of odd k 9)
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