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High-Performance InP/l3Gay 47AS/INP
Double HBTs on GaAs Substrates

Y. M. Kim, M. Dahlstrom, S. Lee, M. J. W. Rodwell, and A. C. Gossard

Abstract—nP/In g 53 Gag 47 AS/INP  double heterojunction
bipolar transistors (HBTs) were grown on GaAs substrates. A
140 GHz power-gain cutoff frequency fmax and a 207 GHz
current-gain cutoff frequency f, were obtained, presently the
highest reported values for metamorphic HBTs. The breakdown
voltage BVero was 5.5 V, while the dc current gain3 was 76.

TABLE |
LAYER STRUCTURE OF THEMBE-GROWN InP/Ing 53 Gay 47 As/InP
METAMORPHIC DHBT. ALL GRADED LAYERS ARE
INg 55Gay 47 AS/INg 52Al 5 45 AS DIGITAL ALLOY GRADES, EXCEPT THE
BASE, WHICH IS AN In,Ga _, As LINEAR COMPOSITIONAL GRADE. THE

BASE-COLLECTOR GRADE HAS A 15 A PERIOD

High-thermal-conductivity InP metamorphic buffer layers were

. L . . La; Material Dopi Thickn A
employed in order to minimize the device-thermal resistance. i = opne ickness ()
. . . ) o Emitter cap Ing 53Gaoa7As 2% 10" em™: Si 300
Index Terms—Heterojunction bipolar transistor, indium phos- oA
i i i Grade 1no.53Go.rAs 2 x 10" em™; Si 200
phide, metamorphic growth, molecular beam epitaxy. to Ing 53Gag26Alo21AS ’
N emitter InP 2% 10" em™: Si 700
I INTRODUCTION N emitter InP 8x 10'7 em™: Si 500
) Emitter-base Ing 53Gao.2sAlp 21As 4 x 10" em®: Si 233
. . . . 17,3,
OUBLE heterojunction bipolar transistors [1]—[3] grade tc;no hlo.4sGsSan.sai;:s 8 x 10" cm®: Be 47
. . . . 455 .545 19 -3.

(DHBTSs) have applications in high-frequency commu- Graded base to Ing 5:Gaga7AS 4x107 om™ Be 400
nications and radar. HBTs using InP based materials (INGaA  setback Ing 53Gag47As 2% 10" om™: si 100
or GaAsSb epitaxial base layers and InGaAs or InP epitaxis ?laset Tng 53Gag7As 2 % 10 ™ Si 240

e . g . collector i ) X cm I 51
collector layers) currently exhibit significantly higher cur- grade to Ino53Gao26Al021As
rent-gain and power-gain cutoff frequencies than GaAs-base puise doping InP 5.6 x 10 con®: Si 30
HBTs. However, InP substrates are expensive and fragile ar coliector InP 2% 10" cm™: Si 1,630
are readily broken during processing. This has motivated th “gucorector [ 1x 10° em™ Si 250
investigation of metamorphic growth of InP-based DHBTS 0N "y ciiecor P 2% 10" e §i 750
GaAs substrates [4], [S]. To date, reported metamorphic HBT: ~ ¢ o~ P andoped 15,000

(M-HBTSs) have not yet demonstrated bandwidth comparable ti
that of lattice-matched InP HBTSs. Further, thermal performance
has not yet been addressed.

Wideband DHBTSs operate at high power densities. Recenglyely). These layers are typically 1;6n thick and lie immedi-
reported static frequency dividers operating at 75-GHz clogitely below the DHBT subcollector.
frequency [6] employ InP HBTs operating at 180 KAKour-  Here we report InP-based DHBTs grown on GaAs using
rent density and’cg ~ 1.1V, corresponding to a power den-|np as the metamorphic buffer layer. This layer has a mea-
sity per unit emitter junction aredg of P/Ap ~ 200 kW/cn¥.  syred 16.1 W/K-m thermal conductivity. The current-gain
Current density, hence power density, must further increaseaigl power-gain cutoff frequencies afe = 207 GHz and
logic speed is increased [6]. W-band DHBT power amplifierg =~ — 140 GHz, both records for M-DHBTSs. An M-DHBT
also operate at high junction power densities. As shown in tgth 0.4 ym x 7.5 ym emitter area has a measured 2.8
seminal work by Liu and Chau [7], [8], because of the conceRymw thermal resistance, and exhibits a small measured 35
trated heat flux |mmed|ate|y below the HBT collector, DHBTK junction_ambient temperature rise even when biased at
thermal resistance is critically dependent upon the thermal 1g- — 190 kA/cm? andV,, = 2 V (P/Ar = 380 kW/cm?).
sistance of layers lying immediately below the DHBT collectopt V., = 1.5V, £, and f...x collapse due to the Kirk effect

and thick layers of low-thermal-conductivity: (= 5 W/k-m)  (collector field screening) occurs at a high = 450 kA/cm?
InGaAs must be avoided in the subcollector. M-DHBTSs face@rrent density.

similar difficulty, because (as measured in our laboratory) In-
AlAs and AlGaAsSb metamorphic buffer layers also have very
low thermal conductivity (10.5 W/K-m, and 8.4 W/K-m respec-

GaAs (100) semi-insulating substrate

Il. GROWTH

INP/Ing 53G& 47As/INP DHBTSs were grown on a GaAs sub-
. . . strate using a Varian Gen |l molecular beam epitaxy (MBE)
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Fig.1. Common emitter dc characteristics of @ x 7.5 m emitter device.

The base-current steps are 4A. Fig. 2. Metamorphic HBT Gummel characteristics of (solid lines) an HBT

with a 0.4um x 7.5 um emitter-base junction and a Lian x 11 um
base—collector junction, and an HBT (dotted lines) with a0 x 60 pm

grading for base transit time reduction, a 240 A InGaAS/Irﬁe_mitter—basejunction and a 1p®n x 130xm base—collector junction.

AlAs base—collector heterojunction grade, and a 1660 A InP
collector. The heterojunction between thg i8Gay 47As base 40
and the InP collector is a 240 AJn3Gay 47As/INg 52Al o 43AS

chirped superlattice whose composition adjacent to the collector 30
is Ing 53Ga&y 26Al 0 21 AS, chosen so as to eliminate discontinu-
ities in the conduction-band energy at the interface. A similar
superlattice grade is employed in the emitter—base junction. To
reduce sensitivity to diffusion of the Be base dopant, a 100 A 104
undoped 19§ 53Gay 47As setback layer was introduced between o
the base and the base—collector grade. The total collector-base o4
depletion region thickness is therefore 2000 A. The metamor- 0.1 1 10 100 1000
phically grown HBT layers are relatively rough (9.5 nm RMS, Frequency (GHz)

as determined by atomic force microscopy).

h
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Fig. 3. Measured short-circuit current gdip, and Mason’s unilateral power
gainU versus frequency for an HBT with a 0¢dn x 7.5 um emitter—base
[Il. FABRICATION junction and a 1.2:m x 11 xm base—collector junctiod = 12.0 mA and

: . . . Vep =15V
HBTSs were fabricated in a triple-mesa process using optical”

projection Ilthqgraphy and selective wet chemlcal gtchlng. UseFig. 2 shows the HBT Gummelds(Ic, I5) versusVes]
of narrow emitter—base and collector-base junctions reduces L i ,
‘Eﬂlractenstlcs, indicating a collector current ideality factor

. : C
both the base_ resistance and the_ collector-base capacnance0 1 and a base current ideality factor of 2.2. The char-
While the emitter contact metal is Ouim x 8 um, lateral un- . . X

: ) ; acteristics are measured with nonzero (0.3 V) reverse bias
dercutting during the HCI-based etch of the InP emitter forms. . . .

. . . . . . applied to the collector—base junction, so that base—collector
an emitter—base junction whose dimensions are approximately . . . )

. . unction leakage, if present, will be observed. For comparison,

0.4pm x 7.5um. Collector—base capacitance is reduced by em-

X . . . ig. 2 also shows the Gummel characteristics of a large-area
ploying narrow base Ohmic contacts of 0,2% width on either -
side of the emitter stripe, producing a small L& x 11 zm HBT (60 im x 60 um emitter—base and 10m x 130 im

. : R .base—collector junctions) fabricated from the same epitaxial
base—collector junction area. Polyimide is used both for passiva-, ~ . : . .
material. Despite the large collector-base junction area, the

tion and for mesa planarization prior to interconnect dep03|t|oe:;1‘.ummeI characteristics indicate thfag, of the large-area HBT
is below 0.14A, indicating a collector-base leakage current
per unit junction area below 18§ A/cm?. The small-area
Fig. 1 shows the common emitter characteristics, measutdBTs are fabricated on a mask set designed for microwave
from 0—400 kA/cm current density. The measured dc currerdn-wafer probing calibrated using the line—reflect—line method,
gain is approximately 76, the common-emitter open-circudind have long (23Q:m) 50 2 coplanar waveguide (CPW)
breakdown voltage at low current densities BM> is greater transmission lines between the probe pads and the transistor
than 6 V, whileVegp sar < 0.8 V at 400 kA/cnt current terminals. The leakage currents observed at 1gwin Fig. 2
density. The measured sheet resistance of the metamorphicfmPthe small-area HBT are dominated by leakage currents
buffer layer is approximately 150 N per square. The baseassociated with conduction through the buffer layer between
sheet resistance is 102Dper square. This sheet resistance wabkese long interconnects. HBTs are minority-carrier devices,
measured after the emitter mesa etch, which removes apprard defect-induced leakage currents resulting from metamor-
imately the upper 100 A of the base layer. The correspondipbic growth are potential concerns. Nevertheless, high dc
hole mobility is 51 crid cm/V-s, 10% lower than we observedcurrent gains and lowc10~2 A/lcm? base—collector leakage
for similar lattice-matched DHBT growths. are observed.

IV. RESULTS
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Fig. 4. Measured current-gain cutoff frequenty and power-gain cutoff

frequencyfmax vVersus current density & = 0.7 VandVeg = 1.5 V.

Fig. 3 shows the current gairh4;) and unilateral power
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temperature rise when biased/at= 190 kA/cm? andV,, = 2
V (P/Ag = 380 kW/cnm?).

(1]

(2]

(3]

(4]

(5]

(6]

gain (V) of the small-area HBT, computed from the measured

0.045-45 GHzS-parameters. A 207 GHZ- and a 140 GHz

fmax Were measured d = 12.0 mA (4 x 10° A/lcm?) and

Vee = 1.5V, as determined by a20 dB/decade extrapola-
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