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III-V's are much better than Silicon (?)

InP: big transport advantages over Silicon
5x107 vs. 1x107 cm/sec collector electron velocity (measured) 
300 Ω/square vs.  ~10 kΩ/square base sheet resistance
3x larger breakdown at similar fτ
shouldn't this lead to ~5 x  faster logic ICs ???

This advantage is not being properly exploited

Silicon bipolars:
more aggressively SCALED (0.18 vs. 1 µm) 
more extrinsic PARASITIC REDUCTION (double poly process)
better designed for LOGIC SPEED (vs. figures-of-merit )

Should inform our efforts to build fast transistors in 6.1 Å system

Third Workshop on the Fabrication, Characterization, and Applications of 6.1 Å III-V Semiconductors, 31 July - 2 August 2001, Snowbird, Utah

InAlAs/InGaAs/InP materials
advanced processes, scaling
→→→→ extreme parasitic reduction

UCSB InP-HBT effort UCSB
ONR

DC- 80 GHz  Amplifier 6.3 dB, 175 GHz 1-HBT amplifier 75 GHz master-slave latch

295 GHz 
fττττ and fmax

1 THz (???)
power-gain cutoff

20 GHz clock ∆∆∆∆−−−−Σ Σ Σ Σ ADC
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Benchmark: master-slave flip-flop configured as 2:1 static frequency divider
Source: M Sokolich, HRL, Rodwell, UCSB 

Logic Speed: III-V vs. Silicon
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State-of-art in HBTs, 2000: cutoff frequencies

InP HBTs today 2x faster, 
& more scalable: Johnson limit, 2x faster at 5x larger dimensions
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State-of-Art in HBTs, 2000: small-scale circuits 
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Si / SiGe has rough parity in logic with InP despite lower fτ, fmax
due to higher current density, better emitter contacts

Si/SiGe has significantly slower amplifiers
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Very strong features of Si-bipolars

Emitter Width:
0.1 um 

Emitter Current Density
10 mA/um2

Polysilicon Emitter Contact
metal-semiconductor contact
area >> emitter junction area
→→→→ low Rex

Polysilicon base contact
low sheet resistance  in extrinsic base
small extrinsic collector-base  junction area
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HBT scaling: transit times
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WCreduce Tb by √2:1
→ → → → τb improved 2:1

reduce Tc by 2:1
→ → → → τc improved 2:1 

note that Ccb has been doubled
..we had wanted it 2:1 smaller

nbb DT 2/2≅τ

satcb vT 2/≅τ

2:1 improved device speed:  keep G's, R's, I's, V's constant, reduce 2:1 all C's, τ 's 

EC WW ~ Assume
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HBT scaling: lithographic dimensions
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Ccb/Area has been doubled
..we had wanted it 2:1 smaller
…must make area=LeWe 4:1 smaller
→ → → → must make We & Wc  4:1 smaller
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Base Resistance Rbb must remain constant
→→→→ Le must remain ~ constant

reduce  collector width 4:1
reduce  emitter width 4:1
keep emitter length constant

2:1 improved device speed:  keep G's, R's, I's, V's constant, reduce 2:1 all C's, τ 's 

EC WW ~ Assume
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HBT scaling: emitter resistivity, current density
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Emitter Resistance Rex must remain constant
but emitter area=LeWe is 4:1 smaller
resistance per unit area must be 4:1 smaller

increase current density 4:1
reduce emitter resistivity 4:1

2:1 improved device speed:  keep G's, R's, I's, V's constant, reduce 2:1 all C's, τ 's 

Collector current must remain constant
but emitter area=LeWe is 4:1 smaller
and collector area=LcWc is 4:1 smaller
current density must be 4:1 larger

EC WW ~ Assume
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for x 2 improvement of all parasitics: 
ft, fmax, logic speed…
base √2: 1 thinner
collector 2:1 thinner
emitter, collector junctions 4:1 narrower
current density 4:1 higher
emitter Ohmic 4:1 less resistive

Scaling Laws for fast HBTs

Challenges with Scaling:
Collector 
mesa HBT: collector under base Ohmics. 
Base Ohmics must be one transfer length
sets minimum size for collector  
Emitter Ohmic: 
hard to improve…how ?
Current Density: 
dissipation, reliability
Loss of breakdown
avalanche Vbr never less than collector Egap 
(1.12 V for Si, 1.4 V for InP) 
….sufficient for logic, insufficient for power
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Tuned ICs: MIMICs & RF
fmax sets gain  
& max frequency, not fτ.

Lumped analog circuits

need high & comparable
fτ and fmax. 

What about digital ?

What HBT parameters determine circuit speed ?

low ft/fmax ratio makes  tuning hard (high Q)
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Neither fτ nor fmax predicts digital speed 

Ccb∆Vlogic/Ic is very important
→ collector capacitance reduction is critical
→ increased III-V current density is critical

Rex must be very low for low ∆Vlogic at high Jc

InP: Rbb , (τb+τc) , are already low, must remain so

What do we need for fast logic ?
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What HBT parameters determine logic speed ?
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Caveats: 
assumes a specific UCSB InP HBT (0.7 um emitter, 1.2 um collector 3kÅ thick, 400 Å base,  1.5E5 A/cm^2)

ignores interconnect capacitance and delay, which is very significant

Cje Ccbx Ccbi (τb+τc) ( I/∆V) total
∆V/ I 33.5% 6.7% 27.8%  68.4%
∆V/ I    12.3% 12.3%
(kT/q) I 1.4% 0.1% 0.4% 0.5% 2.5%
Rex -1.3% 0.1% 0.3% 0.9% 0.1%
Rbb 10.2%  2.8% 3.7% 16.7%
total 43.8% 6.8% 31.3% 17.5% 100.0%

38%
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Why isn't base+collector transit time so important ?
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Scaling Laws, Collector Current Density, Ccb charging time
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Collector capacitance charging time is reduced 
by thinning the collector while increasing current

( )( ) ( ) 















+

∆=∆=∆
sat

C

CB

LOGIC
CLOGICcCLOGICcb v

T
A
A

V
VIVTAIVC

22
1/

emitter

collector
collector φ

ε

Third Workshop on the Fabrication, Characterization, and Applications of 6.1 Å III-V Semiconductors, 31 July - 2 August 2001, Snowbird, Utah

High speed logic transistors are miniature power transistors

Devices must operate at very high current densities

… and must therefore withstand high junction temperatures
…and good thermal conductivity is paramount

… high current densities require high collector fields
… and device must be resistant to breakdown
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What determines logic-gate power ?

Simple 1-level CML gate

beee VV ⋅− 3-2~ bemust  
:VoltageSupply 
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2:1 reduction in base bandgap 
→  →  →  →  2:1 reduction in power (?)

but, there are difficulties…
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If low Vbe = low power, why is SiGe lower-power than InP ?

wireC

LR

DCI

EEV−

wireEELOGICgategate CVV TP ⋅⋅∆>

InP:   Vbe=0.7 V
beats SiGe power for highest speeds only
(fastest SiGe uses E2CL, increased Vce)

Si/SiGe:  Vbe=0.9 V
lower power at moderate & lower speeds

Why ?

Need small emitter area (0.1-- 0.5 um2).
low power = low current
fast HBT = high current density
→ → → → big HBT = high power or low speed

Need small wiring capacitance
short wires = low capacitance = low power
small device  footprint = short wires
many wiring planes = short wires

line.  100on  mV 300 :HBTmA  3 Ω
-or-
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High power density → → → → thermally-aggravated leakage 

Specific concerns with some  6.1 Å materials:

Low base bandgap + + + + low bias voltage = = = = large Ccb charging time
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Circuit design:  HBT fast logic families RSC
UCSB

DARPA
ABCS

CML Gate:
Fast
emitter followers on lower level only 
(level-shifting)
Vcc = 3Vbe+300 mV 
I=3Iswitched=3*∆Vlogic/Zo   (approx.)

ECL Gate:
Adds emitter followers on upper level
Somewhat faster
Vcc = 4Vbe+300 mV 
I=5Iswitched=5*∆Vlogic/Zo   (approx.)

E2CL Gate:
Double emitter followers driving both levels
helps with f/fτ, higher Vce for high J/C
Vcc = 5Vbe+300 mV 
I=7Iswitched=7*∆Vlogic/Zo   (approx.)

Best to use CML for low power
InAs-HBTs may need to be ECL

Zo

CML 

ECL 

Zo
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Opportunities for the 6.1 Å System

HBTs: very very low contact resistivities
GaSb perfect for P-type
InAs perfect for N-type
emitter resistivity is a major scaling problem
low base contact resistivity → → → → less lateral scaling needed
low voltage operation (if low ∆Vlogic , high vsat )

HEMTs:
high ns, high µ : very low contact and access resistance
very high velocity 
high fτ, low noise (if leakage fixed).   
perhaps low voltage logic 


