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Abstract 
 

We describe the design and simulation of highly linear and highly efficient common 
source Class B power amplifiers. Efficient broadband Class B Push-Pull amplifiers are not 
feasible at microwave frequencies as baluns with desired broadband even-mode impedance 
are unavailable. We find, however, that single-ended Class B amplifier with bandpass 
filtering has equivalent efficiency and linearity. Simulations of Class B designs predict a 
power added efficiency (PAE) of 48% with 40 dBc of third order intermodulation product 
(IMD3) performance when biased close to the pinch-off voltage. 
 

I. Introduction 
 

Simultaneously achieving high efficiency and low distortion is a major challenge in 
microwave power amplifier design. Class A amplifiers exhibit low distortion but exhibit 
power added efficiency well below 50%[4]. Improved efficiency is obtained with switched 
mode power amplifiers [5]. These, unfortunately, exhibit high intermodulation distortion in 
multi-tone applications. Push-Pull Class B amplifiers offer the potential for improved 
efficiency, at a theoretical limit of 78.6%[2], combined with distortion as low as Class A.  

 
II. Single-ended Class B Power Amplifier 

 
Efficient broadband Class B amplification is unfortunately not feasible at microwave 

frequencies due to the lack of available baluns with the required zero ohm even-mode 
impedance. With non-zero even-mode impedance, the transistor drain voltage waveform 
contains 2nd harmonic Fourier component, and power is dissipated in the 2nd harmonic, 
degrading efficiency. Additionally, microwave baluns are physically large (of the order λ/2), 
which results both in large excess consumed expensive IC die area and in large excess line 
losses with resulting degradation in efficiency. 
 

We must emphasize that Push-Pull operation, through its symmetry, suppresses only 
even-order (2nd harmonic) distortion [1]. Odd-order component in the circuit transfer 
function, and the resulting two-tone 3rd order intermodulation distortion are not suppressed. 



Third-order distortion characteristics of Class B Push-Pull circuits, therefore, do not differ 
from that of a single-ended Class B amplifier. Consequently, for power amplifier 
applications requiring less than 2:1 frequency coverage, Push-Pull operation is entirely 
unnecessary. Instead, 2nd harmonic Fourier components of the transistor drain current 
waveform can be supplied (provided with the required zero ohm impedance) through use of 
an output bandpass filter, centered at the signal fundamental, and a single transistor stage 
can be employed. Third-order intermodulation characteristics are identical for both Push-
Pull and the single-ended configurations. Therefore, given an operating bandwidth 
requirement of less than an octave, a single-ended Class B amplifier can provide both high 
linearity and efficiency approaching 78.6%. 
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Fig. 1. Circuit Schematic of Push-Pull Class B 
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     Fig. 2. Transfer function of Common Source Amplifier as a function of bias          
  

Two-tone third order distortion characteristics depend critically upon the Class B 
bias point, whether for single-ended or for the equivalent Push-Pull configuration. Bias 



design is, however, most easily discussed in the framework of the Push-Pull stage (Fig.1), 
with drain current Id(Vin), the Push-Pull output current is Io=Id(Vin)-Id(-Vin). Given the 
threshold characteristic typical in HEMT (Fig. 4), third-order distortion is strongly reduced 
for Class B biased precisely at the HEMT threshold voltage (Fig. 3), and degrades as the 
bias is set either above (Class AB) or below (Class C) the threshold voltage. Transfer 
characteristics with Curtice GaN HEMT model are shown in Fig. 2 for Classes AB, B and 
C. 
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Fig. 3. Bias design for good linearity performance 
 

III. Design and Simulations 
 

Designs have been developed for UCSB’s GaN HEMT MIMIC process. Designs 
were developed using the model of a 0.2µm Lg device, resulting in 50 GHz ft and 100 GHz 
fmax [3]. The modeled devices have 50V breakdown and Idss is 650mA/mm. These device 
parameters are representative of better GaN HEMTs fabricated at UCSB. 
 
 The circuit is simulated using Agilent ADS and the Curtice HEMT model. The 
measured HEMT drain current-gate bias characteristics (Fig. 4) and input capacitance 
characteristics (Fig. 5) are precisely modeled, as those parameters are crucial for linearity 
simulations. In particular, IMD3 is generated if the input capacitance Cgs is not purely anti-



symmetric about the gate bias voltage. The GaN HEMT on SiC has very nearly linear 
current-voltage characteristic if biased at the pinch-off voltage, a bias condition which is 
also desirable for high efficiency. 
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Fig 4. Id-Vgs characteristic of GaN HEMT on SiC 
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Fig. 5. Input Capacitance characteristic of GaN HEMT 

 
Circuit simulations (Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10) predict 36dBm output 

power with a saturated efficiency of 48 percent. Two-tone circuit simulations predict IMD3 
levels of -40dBc when the output power is 3dB below the 1-dB gain compression point. The 
zero-input-signal dissipation is low, which will result in high PAE, when a broadband 
amplifier is constructed by frequency-multiplexing an array of class-B amplifiers. A 
systematic study of the influence of bias point on PAE and linearity was performed (Fig. 



10). The optimum operating point is found to be very close to pinch off confirming the 
theoretical predictions. The cascode version of this circuit is being fabricated in GaN HEMT 
technology at UCSB. 

 

 
 

Fig. 6. Circuit Schematic for Single-ended Class B 
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Fig. 7. Drain voltage waveform 
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Fig. 8. Drain current waveform 
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Fig. 9. PAE and IMD3 performance of Class B power amplifier 
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Fig. 10. Bias dependence of PAE and IMD3 
 

 
IV. Conclusions 

 
The Push-Pull configuration is unnecessary and can be replaced by a single ended 

configuration with adequate filtering. The common source Class B can be linear if the 
transfer characteristics are linear. This configuration has shown ~40dBc of linearity at 
10GHz with approximately 48% PAE. 
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