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Abstract 

InP/In0.53Ga0.47As/InP Double Heterojunction Bipolar Transistors were grown on GaAs substrates using a high-
thermal-conductivity InP metamorphic buffer layer. InP metamorphic buffer was selected because it has a large 
thermal conductivity, which is very important in high power device operation. 200 GHz maxf  and 200 GHz τf  
were obtained. This maxf is the highest reported for a metamorphic HBT. The breakdown voltage BVCEO was 6 V 
and the DC current gain β was 27. The base-collector reverse leakage current was 54 nA at VCB =0.3V. 

 
 

I. Introduction 
 

Double heterojunction bipolar transistors [1,2,3]  
(DHBTs) have applications in high frequency communications 
and radar.   HBTs using InGaAs or GaAsSb epitaxial base 
layers and InGaAs or InP epitaxial collector layers  --  lattice-
matched to InP  -- currently exhibit significantly higher 
current-gain and power-gain cutoff frequencies than GaAs-
based HBTs.  However, InP substrates are expensive and are 
available only in smaller diameters than GaAs substrates. 
Additionally, 100-mm-diameter InP substrates are fragile and 
are readily broken during semiconductor manufacturing.  This 
has motivated the investigation of metamorphic growth of InP-
based DHBTs on GaAs substrates [4]. As reported earlier 
[5,6,7], the buffer layer thermal conductivity has a large 
impact upon the device thermal resistance, especially for high 
speed applications where power densities must be high in 
order to minimize C∆V/I charging times. We therefore use InP 
metamorphic buffer layers. We had earlier reported MHBTs 
with 207 GHz τf  & 140 GHz maxf [5]. We here report 
metamorphic HBTs (MHBTs) with greatly improved maxf  
resulting from improved base Ohmic contacts. 200 GHz 

maxf and 200 GHz τf  were obtained. In this work, Pd (30Å)/ 
Ti (200Å)/ Pd (200Å) / Au (400Å) base Ohmic contacts were 
used. These provide specific contact resistance well below 10-6 
Ω cm2. The base-collector leakage current was found to be 54 
nA at VCB=0.3V. Though this leakage is higher than the 2 nA 

cboI  for lattice matched DHBTs in our laboratory, it is still 
acceptable for most circuit applications.  
 
 
 

 
II. Growth 

 InP/In0.53Ga0.47As/InP DHBTs were grown on GaAs 
substrate using a Varian Gen II MBE system equipped with a 
valved phosphorous (P) cracker cell and a valved arsenic (As)  

Table 1 The sample structure of MHBT 
 

Layer Material Doping (cm-3) Thickness (Å) 

Emitter Cap In0.53Ga0.47As 2 × 1019 : Si 300 

Grade 
In0.53Ga0.47As/In0.52Al0.48A

s 
2 × 1019 : Si 200 

N+ Emitter InP 1 × 1019: Si 700 

N- Emitter InP 8 × 1017 : Si 500 

Grade 
In0.53Ga0.47As/In0.52Al0.48A

s 
4 × 1017 : Si 280 

Base In0.53Ga0.47As 4 × 1019 : Be 300 

Set back In0.53Ga0.47As 2 × 1016 : Si 300 

Grade 
In0.53Ga0.47As/In0.52Al0.48A

s 
2 × 1016 : Si 240 

Delta Doping InP 3.6 × 1018 : Si 30 

Collector InP 2× 1016 : Si 1430 

Sub collector In0.53Ga0.47As 1× 1019 : Si 250 

Sub collector InP 1× 1019 : Si 1250 

Buffer InP undoped 15000 

GaAs (100) semi-insulating substrate 

 
 



 

 

cracker cell.  Key features of the layer structure include an InP 
emitter, a 280-Å In0.53Ga0.47As/In0.52Al0.48As base-emitter 
grade, a 300-Å-thick InGaAs base with  52 meV band gap 
grading for base transit time reduction, a 240-Å 
In0.53Ga0.47As/In0.52Al0.48As base-collector heterojunction 
grade, and a 2000-Å InP collector.  Significant base dopant 
migration into the base-collector grade will produce a 
conduction-band energy barrier. For this reason, a 300Å 
undoped In0.53Ga0.47As setback layer was introduced between 
the base and the base-collector grade. The 1.5 µm InP 
metamorphic buffer layer was grown at 470°C directly on the 
GaAs substrate.  During buffer layer growth, the reflection 
high energy electron diffraction (RHEED) showed strong 
streaks, indicating two-dimensional growth, though the 
RHEED intensity was slightly smaller than observed with 
lattice-matched growth. The sample structure was shown in 
table 1. 
 
 

III. Fabrication and Measurement 
 

 HBTs were fabricated in a triple-mesa process using 
optical projection lithography and selective wet chemical 
etching. Use of narrow emitter-base and collector-base 
junctions reduces both the base resistance and the collector-
base capacitance [8]. While the emitter contact metal is 0.7 

mµ × 8 mµ , lateral undercutting during the HCl-based etch 
of the InP emitter forms an emitter-base junction whose 
dimensions are approximately 0.4 mµ × 7.5 mµ . Collector- 

Figure 1: Common emitter DC characteristics of 0.4 mµ × 
7.5 mµ emitter device.  The base current steps are 100 Aµ . 
 
 
base capacitance is reduced by employing narrow base Ohmic 
contacts of 0.25 mµ width on either side of the emitter stripe, 
producing a small 1.2 mµ × 11 mµ base-collector junction 
area. Polyimide is used both for passivation and for mesa 
planarization prior to interconnect deposition. Figure 1 shows 

the common emitter characteristics, measured from 0-400 
2kA/cm  current density.  The measured DC current gain is 

approximately 27, the common-emitter open-circuit 
breakdown voltage at low current densities CEOBV  is greater 
than  6 V, while 8.0, <SATCEV  V at 400 2kA/cm  current 
density. 

Figure 2 :  Metamorphic HBT Gummel characteristics of an 
HBT with a 0.4 mµ ×7.5 mµ emitter-base junction and a 
1.2 mµ ×11 mµ base-collector junction. 
 
   
Figure 2 shows the HBT Gummel ( ),log( BC II  vs. CEV ) 
characteristics, indicating a collector current ideality factor of 
1.06 and a base current ideality factor of 1.48.  The  

Figure. 3 : Measured short-circuit current gain 21h  and 
Mason's unilateral power gain U vs. frequency for an HBT 
with a 0.4 mµ ×7.5 mµ emitter-base junction and a 
1.2 mµ ×11 mµ base-collector junction.  CI =16.0 mA and 

CEV =1.8 V. 
 
 
characteristics are measured with non-zero (0.3 V) reverse bias 
applied to the collector-base junction, so that base-collector 
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junction leakage, if present, will be observed. Fig.2 indicates a 
low leakage current cboI = 54 nA at VCB = 0.3 V, for a device 
with a 1.2 mµ x 11 mµ base-collector junction. Though this 
leakage is higher than the 2 nA cboI  for lattice matched 
DHBTs in our laboratory, it is still acceptable for  

Figure. 4 : Measured current-gain cutoff frequency τf  and 
power-gain cutoff frequency maxf   vs. current density at 

CEV =0.7 Volts and at CEV =1.5 Volts. 
 
 
most circuit applications. The cut-off frequencies τf  =200 
GHz and maxf  = 200 GHz were determined by a -20 
dB/decade extrapolation of h21 and Mason’s unilateral power 
gain, respectively (figure 3). The device was biased at IC = 16 
mA and VCE = 1.8 V. This maxf is the highest value reported 
for a metamorphic HBT. Figure 4 shows the variation of 

τf and maxf  with emitter current density, as measured at VCE 
= 0.7 V and at VCE = 1. 5 V. The observed decrease in τf at 
high current densities is due to the Kirk effect.  
 
 

IV. Conclusion 
 

InP/ In0.53Ga0.47As/InP DHBTs were fabricated using 
InP metamorphic buffer layers on GaAs substrates. τf  =200 
GHz and maxf  = 200 GHz were observed in a device with a 
0.4×7.5 µm2 emitter-base junction. The reverse leakage 
current cboI = 54 nA at VCB = 0.3 V with a 1.2 mµ x 
11 mµ base-collector junction. 
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