Presented at the 1995 IEEE MTT-S Symposium

UCSB

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product

J. Pusl^{1,2}, B. Agarwal¹, R. Pullela¹, L. D. Nguyen³, M. V. Le³, M. J. W. Rodwell¹, L. Larson³, J. F. Jensen³, R. Y. Yu^{1,4}, M. G. Case^{1,3}.

¹ University of California, Santa Barbara
 ² Now with Hughes Space & Communications Company
 ³ Hughes Research Laboratories
 ⁴ Now with Rockwell International Science Center

Support:

California MICRO / Hughes Research Laboratories ARPA Thunder and Lightning Program, AFOSR

Capacitive-Division Traveling-Wave Amplifier

- Traveling-wave (distributed) amplifier : standard broadband IC
- Capacitive division TWA: Ayasli, 1988 broadband power
- Capacitive division TWA:
 significantly larger gain-bandwidth product
- This work: InGaAs/InAIAs HEMT CDTWAs
- Result: 11 dB gain, 96 GHz bandwidth
- Record 340 GHz gain-bandwidth product

Principles of Traveling-Wave Amplifiers

- Broadband circuit.
- FET input / output capacitances absorbed into synthetic transmission lines.
- Gain-bandwidth limited by line losses resulting from FET resistive parasitics.

Synthetic Transmission Lines in TWAs

- Characteristic impedance: $Z_0 = \sqrt{L/C}$
- Cutoff frequency: $f_{cutoff} = 1/\pi\sqrt{LC}$

TWA Bandwidth Limited by Gate-Line Losses

- FET input resistance Ri causes gate line attenuation
- transistors far from input not driven at high frequency
- this limits gain-bandwidth (Ayasli, 1982):

$$|S_{21}|f_{high}^2 \leq \frac{f_{\tau}}{4\pi R_i C_{gs}}$$

... if drain line losses are small (cascode TWA)

Cascode Cell: Negligible Drain-Line Losses

 Cascode cell: very large output resistance drain line losses nearly eliminated model valid for frequencies significantly below fmax

Normal cascode TWAs are not optimal designs

• Gain-bandwidth is well below MAG of cascode cell because 50 Ω load much smaller than cascode R_{out}

Examine the Gain-Bandwidth Limit:

- Decreasing Ri increases gain-bandwidth...
- How can we decrease input resistance Ri?

Capacitive Division Reduces Input Resistance

- same input capacitance,
- same net transconductance
- input & output resistances reduced 2:1
- 2:1 division shown; higher ratios possible

Capacitive Division Increases TWA Gain-Bandwidth

- input & output resistances reduced K:1
- gate line losses reduced K:1
- K:1 more stages can be used: more gain
- at any design bandwidth, gain improved K:1

$$|S_{21}||f_{high}^2 \le K \cdot \left(\frac{f_{\tau}}{4\pi R_i C_{gs}}\right)$$

Large division ratios:

- drain losses now significant, limits gain-bandwidth
- gain-bandwidth approaches MAG limit- optimal circuit
- big FETs, difficult layout

Implementation / Design Features

Hughes Research Laboratories low noise HEMT

- InAIAs / InGaAs / InP HEMT
- 0.15 µm gate length
- $f_t = 160 \text{ GHz}, f_{\text{max}} = 260 \text{ GHz}$

Regular, periodic structure:

- element values from design equations
- not computer optimized
- all cells have same FET sizes, same line lengths

Conservative design:

- 2:1 capacitive division ratio
- designed for positive gain slope vs. frequency
- design gain-bandwidth well below MAG limit
- common-gate damping resistors: stabilization

Die Photo

- Measured by UCSB 200 GHz on-wafer network analyzer
- Difference due to variation in Cgs & gm

- 11 dB gain, 96 GHz bandwidth
- 340 GHz gain-bandwidth product

DC-50 GHz Return Losses & Reverse Isolation

- S22 resonances due to test configuration (bias probe)
- Good input and output return losses

• S12 better than -15 dB below 100 GHz

Capacitive-Division TWA with 340 GHz Gain-Bandwidth Product

- Traveling-wave amplifier: broadband gain block
- Ayasli, 1988: capacitive division TWA
- Capacitive division can sizably improve gain-bandwidth product
- Results for InGaAs/InAIAs amplifier: 11dB gain, 96 GHz bandwidth record 340 GHz gain-bandwidth product
- This work:

conservative design results below limits of device technology

 Designs with 150 & 200 GHz target bandwidths currently in fabrication.