In_{0.53}Ga_{0.47}As/InP Type-I DHBTs having 455 GHz ft and 485 GHz fmax w/ C_{cb}/I_c @ 0.36 ps/V

Zach Griffith and Mark J.W. Rodwell

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA Xiao-Ming Fang, Dmitri Loubychev, Yu Wu, Joel M. Fastenau, Amy W.K. Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015, USA

We report InP/In_{0.53}Ga_{0.47}As/InP DHBTs fabricated using a conventional mesa structure, exhibiting a 455 GHz f_t and 485 GHz f_{max} , which is to our knowledge the highest simultaneous f_t and f_{max} for a mesa HBT. The collector has been scaled vertically to 120nm for reduced electron collector transit time, aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors, and the base and emitter contact resistances \mathbf{r}_c have been reduced. The device reported here employs a 30 nm highly doped InGaAs base and an InGaAs/InAlAs superlattice base-collector grade. Previously reported device results from our laboratory with 150nm collector had a 391 GHz f_t , 505 GHz f_{max} , and $C_{cb}/I_c \cong 0.51$ ps/V operating at $J_e = 5.17$ mA/µm², $V_{ce} = 1.54$ V [1].

Development of digital logic and mixed-signal systems operating at higher clock speeds and bandwidth require continued improvement in transistor performance [2,3]. Projected HBT performance for 160 Gb/s systems include an f_t and $f_{max} > 440$ GHz, a breakdown voltage $V_{BR,CEO} > 3$ V, operating current density $J_e > 10 \text{ mA}/\mu\text{m}^2$ at $V_{cb} = 0$ V, and low base-collector capacitance ($C_{cb}/I_c < 0.5 \text{ psec/V}$). When designing an HBT for use in a digital IC, it should be done with emphasis on minimizing the major delay $\mathbf{t} = C_{cb}\Delta V_{logic}/I_c$. If the device can operate at the Kirk current density $J_{Kirk} \propto T_c^{-2}$ ($\vec{E} = 0$ at the base-collector (B-C) junction) as the collector T_c is thinned, the delay $C_{cb}\Delta V_{logic}/I_c$ scales $\propto T_c$. For an InP DHBT to effectively operate at the higher J_e associated with thinner collectors, proper design and growth of the base-collector grade (Type-I DHBT) is crucial to prevent current blocking related to the conduction band discontinuity $\Delta E_c \approx 0.26$ eV between $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ and InP--these include a chirped superlattice InGaAs / InAlAs grade with pulse doping or step-graded InGaAs / InGaAsP / InP collector. Type-II DHBTs are an alternative where no B-C grading is required because of the staggered band lineup of the GaAsSb base and InP collector, but this comes at the expense of a lower hole mobility \mathbf{m}_p for GaAsSb. We present here a Type-I DHBT with chirped-superlattice B-C grade operating at current densities $J_e \ge 12 \text{ mA}/\mu\text{m}^2$ at a 120nm collector scaling generation without current blocking associated with the conduction band discontinuity ΔE_c .

The epitaxial material was grown by commercial vendor IQE Inc. on a 3" SI-InP wafer and the HBTs were fabricated in an all wet etch, standard triple mesa process. An SEM image of the device is shown in figure 1 and the layer structure is provided in table 1. Details of the base and collector design are given in [4]. The devices are passivated with and the wafer is planarized in benzocyclobutene (BCB) to minimize device leakage currents associated with semiconductor surface charge effects. BCB also provides a low-loss spacer ($e_r = 2.7$, $T_{BCB} = 1.6 \mu$ m) between the device interconnects and InP substrate to reduce spurious resonances from the RF measurements through substrate mode coupling.

Standard transmission line measurements (TLM) show the base $\mathbf{r}_s \approx 610 \ \Omega$ and $\mathbf{r}_c \approx 4.6 \ \Omega \cdot \mu m^2$, and the collector $\mathbf{r}_s \approx 12.1 \ \Omega$ and $\mathbf{r}_c \approx 8.4 \ \Omega \cdot \mu m^2$. The emitter \mathbf{r}_c was determined from RF parameter extraction and $\approx 8.4 \ \Omega \cdot \mu m^2$. The HBTs have $\mathbf{b} \approx 40$, a common-emitter breakdown voltage $V_{BR,CEO} = 3.9 \ V$ (at $I_c = 50 \ \mu A$), and a collector leakage current $I_{cbo} < 30 \ pA$ (at $V_{cb,offset} = 0.3 \ V$). A plot of the common-emitter current-voltage and Gummel characteristics are shown in figures 2 and 3. In addition, figure 2 demonstrates the effectiveness of the chirped-superlattice base-collector grade with no evidence of current blocking until $J_e \ge 12 \ mA/\mu m^2$ at $V_{ce} = 2.0 \ V$. Thermal resistance \mathbf{q}_{JA} (K/mW) and device junction temperature were measured at different V_{cb} to account for the redistribution with bias the dissipated power in the InGaAs setback, ternary grade, and InP layers. Under the following relationship, $\mathbf{q}_{JA} = 2.6561 + 1.0878 \cdot V_{cb} \ (K/mW)$ when $J_e = 5.8 \ mA/\mu m^2$. These devices show little effect of self-heating until 20 mW/\mum^2 and fail at 25 mW/\mum^2 when biased $J_e = 10 \ mA/\mu m^2$, $V_{ce} = 2.5 \ V$, $\Delta T_{failure} \approx 301 \ K$.

DC-40 GHz RF measurements were carried out after performing an off wafer Line-Reflect-Line (LRL) calibration on an Agilent 8510C network analyzer. An on-wafer open circuit pad structure identical to the one used by the devices was measured after calibration in order to de-embed this associated capacitance from the device measurements. A maximum 455 GHz f_t and 485 GHz f_{max} (fig. 4) at $I_c = 22.5$ mA and $V_{ce} = 1.54$ V ($V_{cb} = 0.6$ V, $J_e = 8.7$ mA/ μ m², $C_{cb}/I_c = 0.36$ psec/V, $\Delta T \approx 115$ K) was determined from $|h_{21}|$ and Mason's unilateral gain |U|-extrapolated at -20 dB/dec using a single-pole fit to the small-signal hybrid- π equivalent circuit (fig. 5) for the device. This DHBT has a $0.6 \times 4.3 \ \mu$ m² emitter semiconductor junction area A_{je} and $1.3 \ \mu$ m wide collector mesa-collector to emitter width ratio $W_c/W_e = 2.17$. Peak f_t and f_{max} for all devices is between $J_e = 7-9$ mA/ μ m² at $V_{cb} = 0.6$ V for different device dimensions on the wafer. Figure 6 shows the variation of C_{cb}/A_e vs operating current density J_e and V_{cb} for use in emitter coupled logic (ECL) and current mode logic (CML) circuit design.

This work was supported by the ONR under N0001-40-4-10071 and by the DARPA TFAST program N66001-02-C-8080

- 1. Z. Griffith et al, IEEE Electron Device Letters, vol. 25, no. 5, 2004
- 2. T. Enoki et al, International Journal of High Speed Electronics and Systems, Vol. 11, No. 1, pp. 137-158, 2001
- 3. M. J.W. Rodwell et al, International Journal of High Speed Electronics and Systems, Vol. 11, No. 1, pp. 159-215, 2001
- 4. M. Dahlström et al, IEEE Electron Device Letters, vol. 24, no. 7, pp. 433-534, 2003

Figure 1: Top view SEM of DHBT

Figure 2: Common-emitter I-V characteristics

Table 1: DHBT layer structure

Thickness nm	Material	Doning cm-3	Description
1110010005, 1111	Material	Doping, cm •	Description
30	InGaAs	7-4·10 ¹⁹ : C	Base
15	In _{0.53} Ga _{0.47} As	3⋅10 ¹⁶ : Si	Setback
24	InGaAs / InAlAs	3·10 ¹⁶ : Si	B-C Grade
3	InP	3.10 ¹⁸ : Si	Pulse doping
78	InP	3·10 ¹⁶ : Si	Collector
5	InP	1.10 ¹⁹ : Si	Sub-Collector
6.5	In _{0.53} Ga _{0.47} As	2·10 ¹⁹ : Si	Sub-Collector
300	InP	2·10 ¹⁹ : Si	Sub-Collector
Substrate	SI : InP		

Figure 3: Gummel characteristics

0.2 V

10 12

10¹²

12

-0.3 V