

Millimeter wave MIMO Wireless Links at Optical Speeds

E. Torkildson, B. Ananthasubramaniam, U. Madhow, M. Rodwell

Dept. of Electrical and Computer Engineering University of California, Santa Barbara

- Seamless interface of wireless to optical
 - Key to a fail-safe, rapidly deployable infrastructure
- Problem: A Huge Wireless/Optical Capacity Gap
 - Wireless can do 10s of Mbps, optical 10s of Gbps
- How do we get to 40 Gbps wireless?
 - How would you process passband signals so fast?
 - Where is the bandwidth?

- 13 GHz of E-band spectrum for outdoor point-to-point links
 - 71-76 GHz, 81-86 GHz, 92-95 GHz
 - Semi-unlicensed
 - Narrow beams required
- CMOS and SiGe are getting fast enough
 - Low-cost mm wave RF front ends within reach
- Application requirements
 - Required range of kilometers
 - Highly directive antennas
 - High power transmission not possible
 - Ease of instalment

- Tight power budget with low-cost silicon RF realizations
 - small constellations
 - Singlecarrier modulation
- Eliminate need for highly skilled installers
 - Electronic beamsteering
- 5 GHz of contiguous spectrum
 - 5 Gbps with QPSK and 100% excess bandwidth

But how do we scale from 5 Gbps to 40 Gbps?

Millimeter-wave MIMO in one slide

Example system: 40 Gbps over 1 km using 5 GHz of E-band spectrum 4 x 4 array of subarrays at each end Overall array size with sub-Rayleigh spacing ~ 2 x 2 meters 8 out of 16 transmit at 5 Gbps for aggregate of 40 Gbps QPSK with 100% excess bandwidth over the 75-80 GHz band Level 1 signal processing: Transmit and receive subarray beamforming Level 2 signal processing: 16-tap receive spatial equalizer (each receive subarray corresponds to one equalizer tap)

- Parallel spatial links at 1-5 Gbps to get 10-40 Gbps aggregate
- Low cost realization of large beamsteering arrays for accurately pointing each parallel link
- Spatial interference suppression across parallel links
- Signal processing/hardware co-design to handle ultra-high speeds
 - Level 1: beamforming reduces subarrays to virtual elements
 - Level 2: Spatial multiplexing using virtual elements
- CMOS RFIC design for low-cost realization

The rest of this talk

- Link budget benchmark
- Level 1 beamforming
 - Possible geometries
 - Joint upconversion/beamsteering: row-column design
- Level 2 spatial multiplexing
 - Model
 - Spatial multiplexing configurations
 - Performance with zero-forcing solution
 - Gap to capacity
- Conclusions

Link budget benchmark

- $f_{carrier} = 75 \text{ GHz} (\lambda = 4 \text{ mm}) \text{ with } W = 5 \text{ GHz}$
- MBIC controls 4x4 square array
- $G_{trans} = G_{receive} = 45 \text{ dB and}$
- 3-dB antenna beamwidth = 2°
- Receiver Noise Figure = 6.5 dB
- Desired Bit Rate = 5 Gbps using QPSK
- Design BER = 10⁻⁹

Even in 25mm/hr rain, and transmitting only 10 mW / MBIC element, we get a 25 dB link margin

From fixed to steerable beams

- The Directivity Gain of each subarray is $G = \frac{4\pi A_{eff}}{\lambda^2}$
- The effective aperture A_{eff} of half-length spaced square array at mm-wave is small
- The A_{eff} can be increased using (a) parabolic dish (like a telescope) or (b) antenna elements on printed circuit board with a larger area

Row-column beamsteering

- 16 discrete phases of two LOs
- Phase on each element is set by row first, then by column
- 2D steerability close to unconstrained weights
- Limit on IF and LO buses (frequency and max N)

- 4x4 subarray, λ/2 spacing
- 4 quantized phases along vertical and horizontal
- Plots show beamforming gain available along any direction
 - Max gain is 12 dB
 - Quantization loss can be up to 3.5 dB
 - Easily remedied by finer quantization (e.g., 8 phases)

Level 2 geometry: intuition

 $\delta\theta = D/R$

Signal Phase Separation of 2 Transmitters at the Receivers $\delta \phi_e = \delta \theta \cdot 2\pi D / \lambda$

If δφ_e = π , e.g. D = √λR/2, then simple in - phase combining of receiver signals to aim receiver array at desired transmitter will result in 100% suppression of signal from undesired transmitter.
This corresponds to the Rayleigh criterion in diffraction - limited imaging

Level 2 geometry: details

Two "neighboring" virtual transmit elements should have different enough receive array responses

receive elements

Each virtual element is a subarray providing beamforming gain

$$\sqrt{(R+D)^2} - R \approx \frac{D^2}{2R}$$

$$\phi = \frac{2\pi}{\lambda} \frac{D^2}{2R} = \frac{\pi D^2}{R\lambda}$$

Phase difference between adjacent receive elements due to one transmit element

Level 2: Criterion for zero interference

No interference if $N\phi = \pi$ or $D = \sqrt{\frac{R\lambda}{N}}$

Rayleigh criterion

Example: 75 GHz carrier, 1 km range, 8 receive subarrays Array dimension is about 5 meters Too big?

- Sub-Rayleigh spacing between virtual elements
 - Combat interference using spatial equalizer at level 2
- Two-dimensional array instead of linear array
 - The rayleigh spacing for NxN array is $N^{\frac{1}{2}}$ larger than N^2 ULA
 - But side dimension is N times for N² ULA than NxN array

Noise enhancement due to ZF equalizer

- Uncoded system with QPSK
 - Gap to Shannon capacity about 11 dB at BER of 10⁻⁹
 - Constellation expansion + coding unlikely in near future
 - Expect this gap to remain
- Suboptimal zero-forcing reception
 - MIMO capacity realized by transmitting along orthog eigenmodes
 - Gap is mainly due to noise enhancement
 - May be able to reduce gap using decision feedback

- "Wireless Fiber" is now truly within reach
 - All weather 40 Gbps wireless links with kilometers range
- Applications galore
 - Last mile
 - Disaster recovery using hybrid optical/wireless backbone
 - WiMax backhaul
 - Avoiding right-of-way issues

- We have an architecture and systems level analysis
- Now comes the hard work
 - Cutting edge mm wave RFIC design (90 nm CMOS)
 - Hybrid digital/analog baseband algorithms
 - High-speed baseband CMOS ICs
 - Subarray design: IC realization, physical antenna
 - Protocols incorporating transmit and receive beamforming
 - Handling multipath

spatial equalizer

The Rayleigh criterion in imaging

🖏 The Rayleigh Criterion - Mozilla Firefox	🕲 Rayleigh Criterion - Mozilla Firefox
File Edit View Go Bookmarks Tools Help	File Edit View Go Bookmarks Tools Help
	A Section of the section of
	Ravleigh Criterion
The Rayleigh Criterion	
The Rayleigh criterion is the generally accepted criterion for the minimum	1.00 -
resolvable detail - the imaging process is said to be diffraction-limited when the	
first diffraction minimum of the image of one source point coincides with the	
maximum of another.	
Unresolved	
Resolved Rayleigh	x (nm)
a state of the of the	
$\sin \Theta_{R} = \frac{\lambda}{d}$ $\sin \Theta_{R} = 1.22 \frac{\Lambda}{d}$	
Single slit Circular aperture	
	a1 = [250 Set Width (mm) /.1 = [5000 Set Lamda (nm)
Done	
	Note: keep Add
The Rayleigh criterion gives exactly zero	L>>a <u>Start/Reset</u> <u>Superposition</u>
crosstalk. Sub Rayleigh spacing results in	
crosstalk which must be corrected by a	
Clossian which must be conected by a	

javascript:mjb32_1()