InGaAs/InP DHBTs for Increased Digital IC Bandwidth having a 391 GHz f_τ and 505 GHz f_{max}

Z. Griffith¹, M. Dahlström³ and M. J.W. Rodwell¹ Fellow IEEE
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
griffith@ece.ucsb.edu, 805-893-3273

X.-M. Fang², D. Lubyshev², Y. Wu², J. M. Fastenau², and W.K. Liu² Senior IEEE
²IQE Inc., 119 Technology Drive, Bethlehem, PA 18015, USA
³now with IBM Microelectronics Semiconductor Research and Development Center
Essex Junction, VT 05452

Abstract

InP/In₀.₅₃Ga₀.₄₇As/InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391 GHz f_τ and 505 GHz f_{max}, which is the highest f_τ reported for an InP DHBT—as well as highest simultaneous f_τ and f_{max} for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance C_{cb}. In addition, the base sheet resistance ρ_b along with the base and emitter contact resistivities ρ_c have been lowered. The DC current gain β is ≈ 36 and $V_{BR,CEO} = 5.1$ V. The devices reported here employ a 30 nm highly doped InGaAs base, and a 150 nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142 GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from $f_{\text{clk}} = 3$ GHz to 142.0 GHz while dissipating ≈ 800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies > 100 GHz.

Index terms: Heterojunction bipolar transistor (HBT)
Introduction

Development of digital logic and mixed-signal systems operating at higher clock speeds and bandwidth require continued improvement in transistor performance [1,2]. Target HBT specifications for 160 Gb/s systems include an f_t and f_{max} higher than 440 GHz, a breakdown voltage exceeding 3 V, operating current density greater than 10 mA/µm2 at a base-collector voltage $V_{cb} = 0.0$ V, and low base-collector capacitance ($C_{cb}/I_c < 0.5$ psec/V) [3]. When designing an HBT for use in emitter coupled logic (ECL), it should be done with emphasis on minimizing the major delay term $\tau = C_{cb}\Delta V_{logic}/I_c$, where $\Delta V_{logic} \approx 300$ mV for ECL. If the operating point for these devices can be maintained at the Kirk threshold current density J_{Kirk} for the respective V_{cb} (the bias for which the electric field at the base-collector junction becomes zero), the delay $C_{cb}\Delta V_{logic}/I_c$ scales proportionally to the collector thickness, T_c. To increase digital circuit speed, the collector must be thinned, but as $J_{Kirk} \propto T_c^{-2}$, the collector should not be thinned to where the voltage drop on the emitter parasitic resistance $\Delta V_{parasitic} = I_e \cdot R_{ex} \approx J_{Kirk} \cdot \rho_e \propto T_c^{-2}$ becomes a significant portion of ΔV_{logic}. Recently fabricated state-of-the-art InP DHBTs with a 150 nm collector used in digital benchmark circuits [4] have an emitter $\rho_e \approx 20$ Ω·µm2 and operate a $J_e \approx 6$ mA/µm2--producing a $\Delta V_{parasitic} \approx 120$ mV. As the collector is thinned to 100 nm, J_{Kirk} will increase to > 10 mA/µm2 and without reductions to ρ_e, $\Delta V_{parasitic}$ will be > 200 mV--a considerable fraction of ΔV_{logic}, and circuit bandwidth will suffer. By simultaneously thinning the collector and reducing the emitter contact resistance ρ_e, device and circuit bandwidth will increase.

In addition to vertical scaling of the collector thickness, lateral scaling of the base and collector junctions is necessary to reduce delays associated with R_{bb} and C_{cb}. For our mesa
HBT process, this scaling is limited by alignment registration tolerance and by the ohmic transfer length L_T of the base contact. The minimum base contact width W_B feasible in our laboratory is 0.3 µm based on typical base contact resistivity and collector undercut. Scaling W_B any further than this will increase $R_{bb\text{cont}} \propto \coth(W_B/L_T)$ at a rate greater than the reduction of $C_{cb} \propto W_B$, and the device and circuit performance overall will be poorer.

Prior to this work, the highest f_τ reported for an InP DHBT was 370 GHz with an f_{max} of 459 GHz [5], having a 30 nm base and 150 nm collector. The highest reported f_{max} for a mesa HBT is 519 GHz, with a 252 GHz f_τ [6], having a 40 nm base and 150 nm collector. Here we report a 391 GHz f_τ and 505 GHz f_{max} InP DHBT--the highest f_τ reported for such a device.

Design, growth, and fabrication

The epitaxial material was grown by commercial vendor IQE Inc on a 3” SI-InP wafer and the HBTs were fabricated in an all wet etch, standard triple mesa process. The device layer structure is similar to that reported in [7] and details of the base and collector design are given in [8]. The improvements in the device design here compared to [5] include the use of an indium rich InGaAs emitter cap doped at $3 \cdot 10^{19}$ cm$^{-3}$ for reduced emitter contact resistance, and slightly reduced base doping combined with the use of benzocyclobutene (compared to polyimide for [5,8]) for device passivation to increase DC current gain β. This lighter doping also brings with it an increased hole mobility μ_p, producing an overall increased doping-mobility product and hence lower base sheet resistance--$\mu_p \approx 52$ and 61 cm2/V·sec for a $8 \cdot 10^{19}$-5$ \cdot 10^{19}$ cm$^{-3}$ [5,8] and 7$ \cdot 10^{19}-4 \cdot 10^{19}$ cm$^{-3}$ doping grade, respectively.

The static frequency divider is a master-slave flip-flop with the output cross-coupled to the input to generate $f_{\text{clk}}/2$ frequency division of the clock source (fig. 1). The divider design techniques are similar to those reported in [4], with details provided in figure 1. Thin-film
dielectric microstrip wiring is employed by the RF device test structures and circuit interconnects for its predictable characteristics, controlled impedance, and reduced line coupling at very high frequencies within dense mixed-signal ICs. This is realized by placing 3.5 \(\mu \)m of benzocyclobutene (BCB) above the signal interconnects (M1) and using the top-most interconnect layer (M3) as a large ground plane.

Results

Standard transmission line measurements (TLM) show the base \(\rho_b \approx 564 \) \(\Omega \) and \(\rho_c \approx 9.6 \) \(\Omega \cdot \mu \text{m}^2 \), and the collector \(\rho_b \approx 11.9 \) \(\Omega \) and \(\rho_c \approx 5.4 \) \(\Omega \cdot \mu \text{m}^2 \). SEM images of the TLMs were taken to account for variance between the photomask and fabricated spacings to ensure accurate extraction of \(\rho_b \) and \(\rho_c \). The emitter \(\rho_c \) was determined from RF parameter extraction

\[
\left(\text{Re}(Y_{12}) \right)^{-1} = R_{ex} + \frac{R_{bb}}{\beta} + \frac{NkT}{qI_c}
\]

and \(\approx 10.1 \) \(\Omega \cdot \mu \text{m}^2 \). This emitter \(\rho_c \) is consistent with other devices on the wafer with varying emitter dimensions. The HBTs have \(\beta \approx 36 \), a common-emitter breakdown voltage \(V_{BR,CEO} = 5.1 \) V (at \(I_c = 50 \mu \text{A} \)), and a collector leakage current \(I_{cbo} = 108 \) pA (at \(V_{cb,offset} = 0.3 \) V). A plot of the common-emitter current-voltage and Gummel characteristics are shown in figure 2. DC-50 GHz RF measurements were carried out after performing an off wafer Line-Reflect-Reflect-Match (LRRM) calibration on an Agilent 8510 XF network analyzer. An on-wafer open circuit pad structure identical to the one used by the devices was measured after calibration in order to de-embed this associated capacitance from the device measurements. A maximum 391 GHz \(f_t \) and 505 GHz \(f_{max} \) (fig. 3) at \(I_c = 13.1 \) mA and \(V_{ce} = 1.54 \) V (\(V_{cb} = 0.60 \) V, \(J_c = 5.17 \) mA/\(\mu \text{m}^2 \), \(C_{cb}/I_c = 0.51 \) psec/V) was determined from \(|H_{21}| \) and Mason’s unilateral gain \(|U| \)--extrapolated at -20 dB/dec using a single-pole fit to the small-signal hybrid-\(\pi \) equivalent circuit (fig. 4) for the device. This
device has a $0.6 \times 4.25 \, \mu m^2$ emitter semiconductor junction area A_{je} and 0.3 μm wide base contact widths—1.3 μm base mesa width, and collector to emitter mesa width ratio $W_c/W_e = 2.17$. Note that the C_{cb}/C_{cbx} ratio of the model is smaller than expected from geometry [9,3]—an effect which may be due in part to capacitance cancellation [10,11,3]. Peak f_r and f_{max} is between $J_e = 5.0$-5.5 mA/μm^2 at $V_{cb} = 0.6$ V for different HBTs on the wafer.

Divide by 2 measurements for clock frequencies ranging from 3 to 142.0 GHz were performed without the use of an input clock driver to the divider core. Because of this, an offset voltage $V_{offset} = -0.6$ V at all clock input devices is required to maintain their V_{cb} reverse biased while the clock signal is applied. All measurements took place without any surface cooling and the wafer chuck temperature at 25°C. The divider was clocked as low as 3 GHz ($P_{clk} \approx 13$ dBm) to demonstrate that it is fully static. For measurements at 142 GHz, the synthesizer signal is quadrupled using a Virginia Diode (VDI) doubler chain with the output amplified and delivered on-wafer with a WR-05 wafer probe. The output spectrum of the divide by 2 operating at 142 GHz is shown in figure 5 and the signal drive power at the probe tip is ≈ 12 dBm. Sensitivity measurements were performed and the self-oscillation frequency is ≈ 84 GHz. Most HBTs in the circuit are biased closely to $J_{Kirk} \approx J_{design}$ for minimum C_{cb}/I_c ratio [3]—but because the devices at the data level (fig. 1--Q1, Q2) are biased at $I_{bias} \gg I_{Kirk}$ due to a lower fabricated sheet resistance than designed for the biasing resistors ($\rho_{sheet, fab} = 40 \, \Omega$ versus $\rho_{sheet, design} = 50 \, \Omega$), circuit performance suffers compared to [4, 12].

Acknowledgement

This work was supported by the Office of Naval Research under contracts N00014-01-1-0024 and N0001-40-4-10071, and by DARPA under the TFAST program N66001-02-C-
Special thanks to Dr. John Hacker and Dr. Miguel Urteaga of the Rockwell Scientific Corporation for their assistance with the RF device measurements reported here and to Dr. Nathan Harff and Jason Prairie of the Mayo Clinic Special Purpose Processor Development Group (SPPDG) for the testing of these dividers > 113 GHz.
References

5. Z. Griffith, M. Dahlström, M. Urteaga, M.J.W. Rodwell “InGaAs/InP mesa DHBTs with simultaneously high f_T and f_{max}, and low C_{ce}/I_c ratio”, *IEEE Electron Device Letters*, vol. 25, no. 5, pp. 250-252, 2004

9. M. Vaidyanathan and D. L. Pulfrey, “Extrapolated f_{max} of Heterojunction Bipolar Transistors”,

 IEEE Gallium Arsenide Integrated Circuit (GaAsIC) Symposium, 3-6 Nov., 1996, pp. 303-306

11. Y. Betser and D. Ritter, “Reduction of the Base-Collector Capacitance in InP/InGaAs Heterojunction Bipolar Transistors Due to Electron Velocity Modulation”,

 IEEE Electron Device Letters, vol. 25, no. 8, pp. 520-522, 2004
Figure Captions

Figure one: Schematic of static frequency divider with design details--including the values of circuit load resistance R_L, peaking inductance L_{peak}, and the emitter junction areas A_{je}

Figure two: Common-emitter I-V characteristics and Gummel characteristics. Device junction dimensions $A_{je} = 0.6 \times 4.25 \ \mu m^2, A_{jc} = 1.3 \times 6.5 \ \mu m^2$

Figure three: Measured microwave gains

Figure four: Small signal hybrid-π equivalent circuit model

Figure five: Divider output spectrum at 71 GHz, $f_{clk} = 142$ GHz. The measurement includes 17 dB of attenuation--not corrected in the output spectrum.
Figure one: (Z. Griffith et al.)
Figure two: (Z. Griffith et al.)

Common-emitter I-V characteristics

\[J_e (mA/\mu m^2) \]

\[V_{ce} (V) \]

\(I_{b\,\text{step}} = 85 \, \mu A \)

Peak \(f_t, f_{\text{max}} \)

Gummel characteristics

\[V_{CB} = 0.0 \, V \, \text{(dashed)} \]

\[V_{CB} = 0.3 \, V \, \text{(solid)} \]

\(I_c = 1.17 \)

\(n_c = 1.17 \)

\(I_b = 1.38 \)

\(n_b = 1.38 \)

\[V_{be} (V) \]
Figure three: (Z. Griffith et al.)

- $I_c = 13.2$ mA
- $A_{jbe} = 0.6 \times 4.25 \text{ um}^2$
- $J_e = 5.17 \text{ mA/um}^2$, $V_{cb} = 0.6 \text{ V}$
- $f_t = 391 \text{ GHz}$, $f_{\text{max}} = 505 \text{ GHz}$

\[f_t \leq 3 \times 10^9 \text{ Hz}, \quad f_{\text{max}} \leq 5 \times 10^{12} \text{ Hz} \]
Figure four: (Z. Griffith et al.)
Figure five: (Z. Griffith et al.)