Indium Phosphide and Related Material Conference 2006

InGaAs / InP DHBTs with a 75nm collector, 20nm base demonstrating 544 GHz f_{τ} , BV_{CEO} = 3.2V, and BV_{CBO} = 3.4V

Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, 93106-9560, USA

Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy Liu IQE Inc. 119 Bethlehem, PA 18015, USA

griffith@ece.ucsb.edu, 805-453-8011, 805-893-3262 fax

High speed HBTs: some standard figures of merit

Small signal current gain cut-off frequency (from H_{21})...

$$\frac{1}{2\pi f_{\tau}} = \tau_{b} + \tau_{c} + \frac{nk_{B}T}{qI_{c}} (C_{je} + C_{bc}) + (R_{ex} + R_{c})C_{bc}$$

Power gain cut-off frequency (from U)...

$$f_{\max} \cong \sqrt{\frac{f_{\tau}}{8\pi R_{bb}C_{cb,i}}}$$

Collector capacitance charging time when switching...

$$\tau \propto \frac{C_{cb}}{I_c} \Delta V$$

Present Status of Fast Transistors

popular metrics : f_{τ} or f_{max} alone $(f_{\tau} + f_{max})/2$ $\sqrt{f_{\tau} f_{max}}$ $(1/f_{\tau} + 1/f_{max})^{-1}$

much better metrics :power amplifiers :PAE, associated gain, $mW/\mu m$ low noise amplifiers : F_{min} , associated gain,digital : f_{clock} , hence $(C_{cb}\Delta V / I_c)$, $(R_{ex}I_c / \Delta V)$, $(R_{bb}I_c / \Delta V)$, $(\tau_b + \tau_c)$

Bipolar Transistor Scaling Laws & Scaling Roadmaps

Scaling Laws: design changes required to double transistor bandwidth

key device parameter	required change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter resistance per unit emitter area	decrease 4:1
current density	increase 4:1
base contact resistivity (if contacts lie above collector junction)	decrease 4:1
base contact resistivity (if contacts do not lie above collector junction)	unchanged

Technology Roadmap through 330 GHz digital clock rate							
	Parameter	scaling	Gen. 2	Gen. 3	Gen. 4		
	MS-DFF speed	$\frac{1 \text{aw}}{\gamma^1}$	158 GHz	230 GHz	330 GHz		
	Emitter Width	$1/\gamma^2$	500 nm	250 nm	125 nm		
	Resistivity	$1/\gamma^2$	15Ω -μm ²	7.5Ω -μm ²	5Ω -μm ²		
	Base Thickness	$1/\gamma^{1/2}$	300Å	250 Å	212 Å		
	Doping	γ^0	$7 \ 10^{19} / \mathrm{cm}^2$	$7 \ 10^{19} / \text{cm}^2$	$7 \ 10^{19} / \mathrm{cm}^2$		
	Sheet resistance	$\gamma^{1/2}$	500 Ω	600 Ω	707 Ω		
	Contact p	$1/\gamma^{1/2}$	20Ω - μ m ²	10Ω - μ m ²	5Ω -μm ²		
	Collector Width	$1/\gamma^2$	1.1 μm	0.54 μm	0.27 µm		
	Thickness	1/γ	1500 Å	1060 Å	750 Å		
	Current Density	γ^2	5	10	20		
	A / A	0	mA/µm²	mA/µm²	$mA/\mu m^2$		
	A _{collector} /A _{emitter}	γ°	2.8	2.8	2.8		
	$f_{ au}$	γ^1	371 GHz	517 GHz	720 GHz		
	f_{\max}	γ^1	483 GHz	724 GHz	1.06 THz		
	I_{F}/L_{F}	γ^0	2.4	2.4	2.4	k	
			mA/µm	mA/µm	mA/µm	ey fc	
	$ au_{f}$	1/γ	340 fs	250 fs	170 fs	fig r h	
	C_{cb}/I_c	1/γ	440 fs/V	310 fs/V	220 fs/V	ogi	
	$C_{cb} \Delta V_{\rm logic} / I_c$	1/γ	130 fs	94 fs	66 fs	es c c s	
	R_{bb} /($\Delta V_{ m logic}$ / I_c)	γ^0	0.66	0.51	0.41	of n pee	
	$C_{je}(\Delta V_{\text{logic}} / I_C)$	$1/\gamma^{3/2}$	350 fs	250 fs	180 fs	ner. 9d	
	$R_{ex}/(\Delta V_{ m logic}/I_c)$	γ^0	0.24	0.24	0.24	it	

Key scaling challenges emitter & base contact resistivity current density→ device heating collector-base junction width scaling & Yield !

DC, RF performance—100 nm collector, 30 nm base

Z. Griffith, IPRM 2005, Glasgow, Scotland

Layer structure -- 75 nm collector DHBT

Objective:

- Thin collector and base for decreased electron transit time
- High f_{τ} device with moderate f_{max}
- Investigate J_{max} before current blocking in the base-collector grade
- What is the HBT breakdown at this collector scaling node?

Thickness (nm)	Material	Doping cm ⁻³	Description	
10	In _{0.85} Ga _{0.15} As	5∙10 ¹⁹ : Si	Emitter cap	
15	In _x Ga _{1-x} As	> 4·10 ¹⁹ : Si	Emitter cap grading	
10	In _{0.53} Ga _{0.47} As	4⋅10 ¹⁹ : Si	Emitter	
70	InP	3⋅10 ¹⁹ : Si	Emitter	
10	InP	1.10 ¹⁸ : Si	Emitter	
40	InP	8·10 ¹⁷ : Si	Emitter	
20	InGaAs	8-6·10 ¹⁹ : C	Base	
10	In _{0.53} Ga _{0.47} As	3⋅10 ¹⁶ : Si	Setback	
24	InGaAs / InAlAs	3⋅10 ¹⁶ : Si	B-C Grade	
3	InP	3⋅10 ¹⁸ : Si	Pulse doping	
38	InP	3⋅10 ¹⁶ : Si	Collector	
5	InP	1.5·10 ¹⁹ : Si	Sub Collector	
7.5	In _{0.53} Ga _{0.47} As	2⋅10 ¹⁹ : Si	Sub Collector	
300	InP	2⋅10 ¹⁹ : Si	Sub Collector	
Substrate	SI : InP			

InP DHBT: 600 nm lithography, 75 nm collector, 20 nm base

DC characteristics

Average $\beta \approx 50$, BV_{CEO} = 3.2 V, BV_{CBO} = 3.4 V ($I_c = 50 \mu A$) Emitter contact (from RF extraction), R_{cont} $\approx 8.6 \Omega \cdot \mu m^2$ Base (from TLM) : R_{sheet} = 805 Ω /sq, R_{cont} = 16 $\Omega \cdot \mu m^2$ Collector (from TLM) : R_{sheet} = 12.0 Ω /sq, R_{cont} = 4.7 $\Omega \cdot \mu m^2$

Experimental Measurement of Temperature Rise

Small signal equivalent circuit and C_{cb} vs bias

- Total forward delay $(2\pi f_{\tau})^{-1} = 0.293$ psec
- Base and collector transit time = 0.179 psec
- Delays associated with C_{cb} account for 77.5 fsec
 - this is ~ 26% of the total delay
- Increased lateral scaling of the HBT footprint required

- No evidence of Kirk effect until 8-9 mA/ μ m² at V_{cb} = 0.0V
- At higher $J_{\rm e}$ and $V_{\rm cb}$, no $C_{\rm cb}$ increase until $J_{\rm e}$ > 13mA/ μm^2
- However, ${\bf f}_{\tau}$ and ${\bf f}_{max}$ have decreased at these biases
- Not clear if intervalley scattering or increased temperature are the cause

High power density operation of 75 nm collector InP HBTs

- InP SHBTs and InP Type-II DHBTs have yet to demonstrate high power density (> 12 mW/ μ m²) operation at moderate voltages
- InP Type-I DHBTs however can operate within 20% of BV_{CEO} while dissipating ~ 18 mW/ μ m²
- What is more important for digital logic?
 - BV_{CEO}, Safe Operating Area (SOA), or both...?

Common emitter and base breakdown of UCSB InP Type-I DHBTs

Collector thicknesses, T_c

Breakdown measurements for UCSB InP DHBTs using the same emitter AND collector dimensions

All HBTs utilize the same device formation techniques and Benzocyclobutene (BCB) passivation

What have we been doing at UCSB to scale the HBT? ...they include

- New UCSB Nanofab stepper system—GCA Autostep 200
- Updated photoresist processes

How the HBT footprint has been improved (at 0.6 µm)

0.35 μ m emitter junction, $W_c/W_e \sim 2.1$ (similar ratio as old process)

0.35 μ m emitter junction, $W_c/W_e \sim 1.8$

Conclusion

- A record 544 GHz f_{τ} has been demonstrated for an InP DHBT
- The trend in C_{cb} with bias is consistent for 75nm across a range of bias
- The 20nm base having a nominal doping of 7.10¹⁹:C had a hole mobility of ~ 55 cm²/V·sec
- The HBT breakdown voltage for this device is similar to the values demonstrated for InP Type-II DHBTs (collector all InP)
- Lateral scaling the HBT footprint is needed...
 - Reduction of C_{cb} for increased f_{τ}
 - Narrow mesa for reduced R_{bb} and more balanced values of f_{τ} and f_{max}

This work was supported DARPA under the TFAST program, N66001-02-C-8080