Device Research Conference 2006

250 nm InGaAs/InP DHBT with 650 GHz f_{max} and 420 GHz $f_t,$ operating above 30 mW/ μm^2

Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, 93106-9560, USA

Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy Liu IQE Inc. 119 Bethlehem, PA 18015, USA

lind@ece.ucsb.edu, 805-893-3273, 805-893-3262 fax

InP/InGaAs <u>D</u>ouble <u>H</u>eterostructure <u>B</u>ipolar <u>T</u>ransistor

Mesa DHBTs for high speed applications

Abrubt InP-InGaAs emitter base junction
InGaAs base provides good hole mobility
Setback and Grade used for BC junction
InP collector

 Objective: Improve DHBT performance by lateral scaling of emitter-base junction!

Fast bipolar transistors

Standard figures of merit / Effects of Scaling

Small signal current gain cut-off frequency (from H₂₁)

$$\frac{1}{2\pi f_{\tau}} = \tau_{b} + \tau_{c} + \frac{nk_{B}T}{qI_{c}} (C_{je} + C_{bc}) + (R_{ex} + R_{c})C_{bc}$$

Thinning epitaxial layers (*vertical scaling*) reduces base and collector transit times... But increases capacitances

Increase current density and reduce resistances.

Power gain cut-off frequency (from U)

Reduce R_{bb} and C_{cb,i} through *lateral* scaling

Charging time for digital logic

Fabrication I – Epitaxial Stack: 150 nm Collector

- 150 nm collector
- 30 nm base, graded carbon doping
- Thin, 6.5nm InGaAs subcollector
- •High f_{max} device with moderate f_{r}

• High V_{ceo}

• Investigate J_{max} increase due to improved thermal capabilities and current spreading – increase in f_{τ}

Thickness (nm)	Material	Doping cm ⁻³	Description	
5	In _{0.85} Ga _{0.15} As	5∙10 ¹⁹ : Si	Emitter cap	
15	In _x Ga _{1-x} As	> 4·10 ¹⁹ : Si	Emitter cap grading	
20	In _{0.53} Ga _{0.47} As	4⋅10 ¹⁹ : Si	Emitter	
80	InP	3⋅10 ¹⁹ : Si	Emitter	
10	InP	8·10 ¹⁷ : Si	Emitter	
40	InP	8·10 ¹⁷ : Si	Emitter	
30	InGaAs	7-4·10 ¹⁹ : C	Base	
15	In _{0.53} Ga _{0.47} As	3.5∙10 ¹⁶ : Si	Setback	
24	InGaAs / InAlAs	3.5⋅10 ¹⁶ : Si	B-C Grade	
3	InP	2.75⋅10 ¹⁸ : Si	Pulse doping	
108	InP	3.5⋅10 ¹⁶ : Si	Collector	
5	InP	1.10 ¹⁹ : Si	Sub Collector	
6.5	In _{0.53} Ga _{0.47} As	2⋅10 ¹⁹ : Si	Sub Collector	
300	InP	2⋅10 ¹⁹ : Si	Sub Collector	
Substrate	SI : InP			

Fabrication II – Lateral Scaling

Fabrication Details:

- I-line optical lithography
- All wet etch, lift-off based process
- 250 nm emitter / base junction
- Reduction in C_{bc} by removing semiconductor under base pad
- BCB passivation

RF and DC performance

- Summary of device parameters—
- Average $\beta \approx$ 25, $V_{BR, CEO} \sim$ 5 V (@ 1kA/µm²)
- f_{max}=650 GHz
- f_t=420 GHz
- Operates at power densities above 30mW/µm²

f_t, f_{max} and C_{Cb} variation

• $J_{kirk} \approx 12 \text{ mA}/\mu m^2$ (@ V_{cb} =0.6V)

 Limited by collector doping and thermal effects

Small signal equivivalent circuit at maximum f_t, f_{max}

- Total delay time: 1/2πf_τ= 0.38 pS
- Base and collector transit times = 0.29pS
- Terms related to C_{cb} = 38 fS
- Larger bandwidth through vertical scaling

Summary resistive elements

- Emitter contact (from RF extraction), $R_{cont} \approx 5.0 \ \Omega \cdot \mu m^2$
- Base (from TLM) : $R_{sheet} = 635 \Omega/sq$, $R_{cont} < 5.0 \Omega \cdot \mu m^2$
- Collector (from TLM) : $R_{sheet} = 12.7 \Omega/sq$, $R_{cont} = 10.0 \Omega \cdot \mu m^2$

Breakdown mechanism for Type-I InP DHBTs

needed for vertical scaling of the collector

Comparison with 0.6 μ m 150nm T_c UCSB DHBT

2004

- Emitter Width 0.6 μ m
- Emitter contact $R_{cont} \approx 10.1 \ \Omega \cdot \mu m^2$
- Base Contact $R_{cont} \approx$ 9.6 $\Omega {\cdot} \mu m^2$
- $J_{kirk} \sim 5.5 \text{ mA}/\mu m^2$ ($P_{max} \sim 15 \text{ mW}/\mu m^2$)
- $f_{\tau} / f_{max} = 391,505 \text{ GHz}$

2006

- Emitter Width 0.25 $_{\mu}m$
- Emitter contact $R_{cont}\approx 5.0~\Omega{\cdot}\mu m^2$
- Base Contact R_{cont} < 5.0 Ω ·µm²
- $J_{kirk} \sim 12 \text{ mA}/\mu m^2 (P_{max} \sim 30 \text{ mW}/\mu m^2)$
- $f_{\tau} / f_{max} = 420,650 \text{ GHz}$

Comparison with SHBT and GaAsSb technologies

Type-I DHBT—InGaAs base, InP collector, ternary B-C grading

- Type I InP DHBTs combines high f_τ / f_{max} with high power densities and breakdown voltages
- InP SHBTs (utilizing InGaAs collector) have very high f_t and f_{max}, but low breakdown voltages.
- InP Type-II DHBTs (InP/GaAsSb/InP) have high breakdown, but f_{max} is low due to base resistance.

Bipolar Transistor Scaling Laws & Scaling Roadmaps

Scaling Laws: design changes required to double transistor bandwidth

key device parameter	required change	
collector depletion layer thickness	decrease 2:1	
base thickness	decrease 1.414:1	
emitter junction width	decrease 4:1	
collector junction width	decrease 4:1	
emitter resistance per unit emitter area	decrease 4:1	
current density	increase 4:1	
base contact resistivity (if contacts lie above collector junction)	decrease 4:1	
base contact resistivity (if contacts do not lie above collector junction)	unchanged	

Technology Roadmap through 330 GHz digital clock rate							
	Parameter	scaling	Gen. 2	Gen. 3	Gen. 4		
	MS-DFF speed	γ^1	158 GHz	230 GHz	330 GHz		
	Emitter Width	$1/\gamma^2$	500 nm	250 nm	125 nm		
	Resistivity	$1/\gamma^2$	15Ω - μ m ²	7.5Ω -μm ²	5Ω -μm ²		
	Base Thickness	$1/\gamma^{1/2}$	300Å	250 Å	212 Å		
	Doping	γ^0	$7 \ 10^{19} / \text{cm}^2$	$7 \ 10^{19} / \text{cm}^2$	$7 \ 10^{19} / \mathrm{cm}^2$		
_	Sheet resistance	$\gamma^{1/2}$	500 Ω	600 Ω	707 Ω		
	Contact p	$1/\gamma^{1/2}$	$20 \Omega - \mu m^2$	$10 \Omega - \mu m^2$	5Ω -μm ²		
	Collector Width	$1/\gamma^2$	1.1 μm	0.54 μm	0.27 μm		
	Thickness	1/γ	1500 Å	1060 Å	750 Å		
	Current Density	γ^2	5	10	20		
		0	$mA/\mu m^2$	$mA/\mu m^2$	$mA/\mu m^2$		
	A _{collector} /A _{emitter}	γ^0	2.8	2.8	2.8		
	f_{τ}	γ^1	371 GHz	517 GHz	720 GHz		
	f_{\max}	γ^1	483 GHz	724 GHz	1.06 THz		
	I_{E}/L_{E}	γ^0	2.4	2.4	2.4	k	
	E E		mA/µm	mA/µm	mA/µm	ey fc	
	$ au_{f}$	1/γ	340 fs	250 fs	170 fs	fig or lı	
	C_{cb}/I_c	1/γ	440 fs/V	310 fs/V	220 fs/V	ogi	
	$C_{cb} \Delta V_{\rm logic} / I_c$	1/γ	130 fs	94 fs	66 fs	S C S	
	R_{bb} /($\Delta V_{ m logic}$ / I_c)	γ^0	0.66	0.51	0.41	of n pee	
	$C_{je}(\Delta V_{\text{logic}} / I_C)$	$1/\gamma^{3/2}$	350 fs	250 fs	180 fs	ner. 9d	
	$R_{ex}/(\Delta V_{\text{logic}}/I_c)$	γ ⁰	0.24	0.24	0.24		

- The current device is Gen 2.5.
- Key enabling technologies for the THz transistor

Present Status of Fast Transistors

popular metrics : f_{τ} or f_{\max} alone $(f_{\tau} + f_{\max})/2$ $\sqrt{f_{\tau} f_{\max}}$ $(1/f_{\tau} + 1/f_{\max})^{-1}$

much better metrics :power amplifiers :PAE, associated gain, $mW/\mu m$ low noise amplifiers : F_{min} , associated gain,digital : f_{clock} , hence $(C_{cb}\Delta V / I_c)$, $(R_{ex}I_c / \Delta V)$, $(R_{bb}I_c / \Delta V)$, $(\tau_b + \tau_c)$

Conclusion

- First generation of UCSB 250nm DHBT device
- $f_t/f_{max} = 420/650 \text{ GHz}$
- Record f_{max} for a DHBT
- High power density ~ 30 mW/ μ m²
- High Kirk threshold ~ 12 mA/ μm²
- High BV_{eco} ~ 5V
- Further scaling is feasible

This work was supported by the DARPA SWIFT program, the ONR under N0001-40-4-10071, DARPA TFAST program N66001-02-C-8080, and a grant by the Swedish Research Council.