Frequency Limits of Bipolar Integrated Circuits

Mark Rodwell University of California, Santa Barbara

Collaborators

Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy, U. Singisetti ECE Dept., University of California, Santa Barbara

M. Urteaga, R. Pierson, P. Rowell, B. Brar Rockwell Scientific Company Sponsors

J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, ABCS, SMART)

I. Mack, D. Purdy, Office of Naval Research

rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

THz Transistors: What does this mean ? What are they for ? How do we make them ?

What could we do with a THz Transistor ?

320 Gb/s fiber optics

mm-wave radio: 40+ Gb/s on 250 GHz carrier

340 GHz imaging systems

Why develop transistors for mm-wave & sub-mm-wave applications ? → compact ICs supporting complex high-frequency systems.

THz Transistors: What does this mean **P**

<u>A 1 THz current-gain cutoff frequency</u> (f_{τ}) <u>alone has little value</u> a transistor with 1000 GHz f_{τ} and 100 GHz f_{max} cannot amplify a 101 GHz signal

<u>RF-ICs & MIMICs need high power-gain cutoff frequency (f_{max})</u> also need high breakdown & high safe operating area (power density)

<u>100+ GHz digital also needs</u> Iow ($C_{depletion} \Delta V / I$) and Iow (I* $R_{parasitic} / \Delta V$)

So, how do we make a transistor with >1 THz f_τ ,>1 THz f_{max} <50 fs CΔV/I charging delays and < 100 mV (I*R_{parasitic}) parasitic voltage drops ?

THz Transistors: How do we make them ?

Present Status of Fast III-V Transistors

Bipolar Transistor Scaling Laws

Design changes required to double transistor bandwidth

key device parameter	required change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter resistance per unit emitter area	decrease 4:1
current density	increase 4:1
base contact resistivity (if contacts lie above collector junction)	decrease 4:1
base contact resistivity (if contacts do not lie above collector junction)	unchanged

InP HBT Scaling Roadmaps

emitter & base contact resistivity current density→ device heating collector-base junction width scaling & Yield !

	1'			G (1
Parameter	scaling	Gen. 2	(250 nm)	Gen. 4 (125 nm)	Gen 5	
MS-DFF speed	1dw	150 GHz	235 GHz	330 GHz	440 GHz	-
Amplifier center	γ	245 GHz	400 GHz	650 GHz	750 GHz	-
frequency	Y					
Emitter Width	$1/\gamma^2$	500 nm	250 nm	125 nm	62.5 nm	-
Resistivity	$1/\gamma^2$	16 Ω- μm ²	9 Ω-μm²	4 Ω- μm ²	2 Ω-μm ²	
Base Thickness	$1/\gamma^{1/2}$	300Å	250 Å	212 Å	180 Å	
Contact width	$\sim 1/\gamma^2$	300 nm	175 nm	120 nm	70 nm	←
Doping	γ ⁰	7 10 ¹⁹ /cm ²				
Sheet resistance	γ ^{1/2}	500 Ω	600 Ω	707 Ω	830 Ω	1
Contact p	1/γ ^{1/2}	20 Ω-μm ²	10 Ω-μm ²	5Ω - μ m ²	5 Ω-μm ²	
Collector Width	$1/\gamma^2$	1.2 μm	0.60 µm	0.37 µm	0.20 µm	
Thickness	1/γ	1500 Å	1060 Å	750 Å	530 Å	1
Current Density	γ^2	4.5	9	18	36	←
		mA/µm ²	mA/µm ²	mA/µm ²	mA/µm ²	
$A_{collector}/A_{emitter}$	γ ⁰	2.4	2.4	2.9	2.8	
f_{τ}	γ^1	370 GHz	530 GHz	730 GHz	1.0 THz	
$f_{\rm max}$	γ^1	490 GHz	801 GHz	1.30 THz	1.5 THz	
I_{π}/L_{π}	ν ⁰	2.3 mA/um	2.3	2.3 mA/um	2.3 mA/um	<u> </u>
<u> </u>	'		mA/µm			fey
$ au_f$	1/γ	340 fs	240 fs	180 fs	130 fs	or l
C_{cb}/I_c	1/γ	400 fs/V	280 fs/V	250 fs/V	190 fs/V	ogi
$C_{cb}\Delta V_{ m logic}/I_c$	1/γ	120 fs	85 fs	74 fs	57 fs	c sk
$R_{bb}/(\Delta V_{\rm logic}/I_c)$	γ ⁰	0.76	0.54	0.34	0.39	of m
~	1	1				1 O 1
$C_{je}(\Delta V_{logic}/I_C)$	$1/\gamma^{3/2}$	380 fs	180 fs	94 fs	50 fs	l nit

2005: InP DHBTs @ 500 nm Scaling Generation

Target Performance: 400 GHz f_r 500 GHz f_{max} 150 GHz digital clock rate (static dividers) 250 GHz power amplifiers

2006: 250 nm Scaling Generation, 1.414:1 faster

Target Performance: 500 GHz f_r 700 GHz f_{max} 230 GHz digital clock rate (static dividers) 400 GHz power amplifiers

125 nm Scaling Generation \rightarrow almost-THz HBT

Target Performance: 700 GHz f_r ~1000 GHz f_{max} 330 GHz digital clock rate (static dividers) 600 GHz power amplifiers

65 nm Scaling Generation—beyond 1-THz HBT

Target Performance:
1.0 THz f_τ
1.7 GHz f_{max}
450 GHz digital clock rate (static dividers)
1 THz power amplifiers

THz Transistors: addressing the key scaling challenges

Our HBT Base Contacts Today Use Pd or Pt to Penetrate Oxides

Wafer first cleaned in reducing

Pd & Pt react with III-V semiconductor

Penetrate surface oxide

Today provide 5 Ω - μ m² resistivity (base)

 \rightarrow investigate better cleaning, alternative reaction metals

Pt Contact after 4hr 260C Anneal

Pt/Au Contact after 4hr 260C Anneal

Chor, E.F.; Zhang, D.; Gong, H.; Chong, W.K.; Ong, S.Y. Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. Journal of Applied Physics, vol.87, (no.5), AIP, 1 March 2000, p.2437-44.

Reducing Emitter Resistance: ErAs Emitter Contacts

Material	Lattice constant	mismatch to ErAs	mismatch to ErSb
ErAs	5.7427Å		
ErSb	6.108Å	$\mathbf{>}$	
GaAs	5.6532Å	-1.6%	-8.0%
InP	5.8687Å	2.1%	-4.0%
GaSb	6.0959Å	5.8%	-0.2%

Epitaxial semimetal similar crystal structure to III-V semiconductors can be grown by MBE

Q. G. Sheng, J. Appl. Phys. (1993) A Guivarc'h, J. Appl. Phys. (1994)

*A. Guivarc'h, Electron. Lett.(1989) **C.J.Palmstrøm Appl. Phys. Lett. (1990)

In-situ contacts \rightarrow no oxides, no contaminants Lattice matched \rightarrow few defect states \rightarrow no surface Fermi pinning Thermodynamically stable \rightarrow little intermixing Well-controlled (atomic precision) interface

Zimmerman, Gossard & Brown, UCSB

Temperature Rise Within Transistor & Substrate

For each doubling in digital clock rate emitter width W_e decreases 4:1 HBT spacing D decreases 2:1

HBT scaling \rightarrow logarithic temperature increase

 $\Delta T_{InP,1} \cong \frac{P}{\pi K_{InP} L_E} \ln \left(\frac{L_e}{W_e} \right) + \dots$

Thinning the substrate aggressively allows acceptable substrate temperature rise even at 300 GHz digital clock rate

Temperature Rise Within Package

Assumptions : Transistor spacing : 20 μ m · (150 GHz/ f_{clock}) $V_{ce} = 2$ V bias 1000 transistors/IC IC power = 1.5 × (transistor dissipation)

For each doubling in digital clock rate

emitter width W_e decreases 4:1

HBT spacing D decreases 2:1

 \rightarrow chip dimensions W_{chip} decrease 2:1

$$\Delta T_{package} \cong \left(\frac{2+\pi}{2\pi}\right) \frac{P_{chip}}{K_{Cu}W_{chip}}$$

At 3 mA per transistor (100 Ω loading) acceptable package temperature rise with 1000 transistors / IC even at 300 GHz digital clock rate.

UCSB DHBTs: 500-600 nm Scaling Generation

Zach Griffith

InP DHBT: 600 nm lithography, 120 nm thick collector, 30 nm thick base

InP DHBT: 600 nm lithography, 75 nm collector, 20 nm base

DC characteristics

Average $\beta \approx 50$, BV_{CEO} = 3.2 V, BV_{CBO} = 3.4 V ($I_c = 50 \mu$ A) Emitter contact (from RF extraction), R_{cont} $\approx 8.6 \Omega \cdot \mu m^2$ Base (from TLM) : R_{sheet} = 805 Ω /sq, R_{cont} = 16 $\Omega \cdot \mu m^2$ Collector (from TLM) : R_{sheet} = 12.0 Ω /sq, R_{cont} = 4.7 $\Omega \cdot \mu m^2$

UCSB / RSC / GCS 150 GHz Static Frequency Dividers

IC design: Z. Griffith, UCSB HBT design: RSC / UCSB / GCS IC Process / Fabrication: GCS Test: UCSB / RSC / Mayo

175 GHz Amplifiers with 300 GHz f_{max} Mesa DHBTs

V. Paidi, Z. Griffith, M. Dahlström

Acc. Y. Spot Magn. Det. WD. Exp. Lat. 21 Acc. Y. Spot Magn. Det. WD. Exp. Lat. 21 DHBT-35 Lat. 24

250 nm scaling generation DHBTs

- 100 % I-line lithography
- Emitter contact resistance reduced 40%: from 8.5 to 5 Ω · μ m²
- Base contact resistance is < 5 $\Omega \cdot \mu m^2$ --hard to measure
- Recall, 1/8 μ m scaling generation needs \leq 5 Ω · μ m² emitter ρ_c

0.30 μ m emitter junction, $W_c/W_e \sim 1.6$

First mm-wave results with 250 nm InP DHBTs

150 nm material250 nm emitter width

 f_{τ} = 420 GHz f_{max} = 650 GHz ~6 V breakdown 30 mW/um² power handling

results submitted postdeadline to 2006 DRC, E. Lind et al

330 GHz Cascode Power Amplifiers In Design

Frequency Limits of Bipolar Integrated Ciruits

Done:

~475 GHz f_t & f_{max} 150 GHz static dividers 160 Gb/s MUX & DMUX (Chalmers/Vitesse)

250 nm results coming very soon.

expect ~200 GHz digital clock rate, 340 GHz amplifiers

THz transistors will come

The approach is scaling. The limits are contact and thermal resistance.

Performance Parameters for Fast Logic & Mixed-Signal

Gate Delay Determined by:

Depletion capacitance charging through the logic swing

$$\left(\frac{\Delta V_{\rm LOGIC}}{I_{\rm C}}\right) (\! C_{cb} + C_{be, \rm depletion})$$

Depletion capacitance charging through the base resistance $R_{bb}(C_{cbi} + C_{be,depletion})$

Supplying base + collector stored charge through the base resistance

 $R_{\rm bb} (\tau_b + \tau_c) \left(\frac{I_C}{\Delta V_{LOGIC}} \right)$

The logic swing must be at least

 $\Delta V_{LOGIC} > 4 \cdot \left(\frac{kT}{q} + R_{ex}I_{c}\right)$

Design HBTs for fast logic, not for high f_t & f_{max}

Performance Parameters for mm-wave Power

Gain....under large-signal conditions

Breakdown AND power density