InP HBTs: Process Technologies and Integrated Circuits

Mark Rodwell University of California, Santa Barbara

rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax

Acknowledgments

Collaborators

Prof. A. Gossard, Dr. A. Jackson, Mr. J. English Materials Dept., University of California, Santa Barbara
M. Urteaga, R. Pierson , P. Rowell, B. Brar Rockwell Scientific Company
Lorene Samoska, Andy Fung Jet Propulsion Laboratories
S. Lee, N. Nguyen, and C. Nguyen Global Communication Semiconductors
Prof. Suzanne Mohney and Group, Penn State
Prof. Ian Harrison, Univ. Nottingham

Present HBT Team Members

Z. Griffith, C. Kadow, N. Parthasarathy, U. Singisetti, C. Sheldon

Past HBT Team Members (random order)

V. Paidi, D. Scott, Y. Dong, M. Dahlström, Y. Wei, M. Urteaga, L. Samoska, S. Lee, Y.-M. Kim, Y. Betser, D. Mensa, U. Bhattacharya, PK Sundararajan, S. Jaganathan, J. Guthrie, H-J. Kim, R. Pullela, B. Agarwal, Q. Lee.

Sponsors

US DARPA: John Zolper, Steve Pappert US ONR: Dan Purdy, Ingham Mack, Max Yoder US ARO, JPL presidents fund, Agilent Technologies, Sun Microsystems, Walsin Lihwa

Thanks To Prof. Bill Frensley, UT Dallas, for the use of BandProf

Applications

High Frequency Electronics: Applications

Optical Fiber Transmission

40 Gb/s: InP and SiGe ICs commercially available

80 & 160 Gb/s is feasible

80-160 Gb/s InP ICs now clearly feasible ~100 GHz modulators demonstrated (KTH Stockholm) 100 + GHz photodiodes demonstrated in 1980's challenge: limit to range due to fiber dispersion challenge: competition with WDM using 10 Gb CMOS ICs

250 GHz digital radio: 100 Gb/s over 1 km in heavy rain

Radio-wave Transmission / Radar / Imaging

65-80 GHz, 120-160 GHz, 220-300 GHz

100 Gb/s transmission over 1 km in heavy rain 300 GHz imaging for foul-weather aviation

science

spectroscopy, radio astronomy

Mixed-Signal ICs for Military Radar/Comms

direct digital frequency synthesis, ADCs, DACs high resolution at very high bandwidths sought

mm-wave sensor networks

300 GHz imaging

ALLER

Gb/s Wireless Home Networks

Fast IC Technologies

InP HBT: 500 nm emitter
 455 GHz f_τ / 485 GHz f_{max}
 ~4 V breakdown
 150 GHz static dividers
 178 GHz amplifiers

SIGe HBT Cross Section (0.25µm SiGe BiCMOS)

SiGe HBT: 130 nm emitter 300 GHz f_τ / 350 GHz f_{max} 96 GHz static dividers 77 GHz amplifiers 150 GHz push-push VCO- 75 GHz fundamental **CMOS:** 90 nm node: ~200 GHz f_τ / 250 GHz f_{max} ~1-1.5 V breakdown 60 GHz 2:1 mux 91 GHz amplifiers

InP HBTs as ultra high speed technology:

~500 GHz bandwidth even at 500 nm scaling with minimal parasitic reduction Potential for much wider bandwidths at ~100 nm scaling

InP HBTs for radio astronomy feasibility of 100 mW power amplifiers at 200 GHz & perhaps 300 GHz \rightarrow aid in developing THz diode frequency multiplier chains

InP DHBTs for $33/45/60/77/\ldots/94$ GHz power ?

InP HBTs have the necessary bandwidth

W-band amps need 200 GHz f_t & fmax Today's InP HBTs: 400-500 GHz f_t & fmax

InP HBTs can handle the necessary voltage

10 V breakdown → adequate power 370 GHz HBTs have 5.6 V breakdown 200 GHz (W-band) HBTs will have 10 V

InP HBTs can handle the necessary power density

10 mW/um² DC dissipation is reliable \rightarrow 5 mW/um² RF output power

 \rightarrow 2.5 mW/um in 0.5 um technology

2 THz-Volt breakdown-bandwidth product $E_{max}V_{sat}$ =2*10¹³ Volt/second

 \rightarrow Power amplifiers to ~80 GHz in 1 um processes 1 um GaAs HBT processes are cheap, why not so InP?

 \rightarrow Power amplifiers to ~350 GHz in 250 nm processes mm-wave & sub-mm-wave systems for radio astronomy

HBT technology

Indium Phosphide Heterojunction Bipolar Transistors

epitaxial layer designs

DHBT epitaxy: Graded InAIAs Emitter, InGaAs base, InAIGaAs Grades

InAIAs emitter InAIAs/InGaAs CSL grade bandgap-graded InGaAs base InAIAs/InGaAs CSL grade InP collector

high breakdown

important for microwave power important for logic

low thermal resistance

necessary for high power density essential for microwave power essential for logic

Performance

ft and fmax good or better than SHBTs

Layer	Material	Doping	Thickness (Å)
Emitter cap	In _{0.53} Ga _{0.47} As	$2 \times 10^{19} \text{ cm}^{-3}$: Si	300
N ⁺ emitter	InP	$2 \times 10^{19} \text{ cm}^{-3}$: Si	700
N ⁻ emitter	InP	$8 \times 10^{17} \text{ cm}^{-3}$: Si	500
Emitter-base grade	$In_{0.53}Ga_{0.26}Al_{0.21}As to In_{0.455}Ga_{0.545}As$	P: 4×10^{17} cm ⁻³ : Si N: 8×10^{17} cm ⁻³ : C	233 47
Base	In _{0.53} Ga _{0.47} As	N: 4×10^{19} cm ⁻³ : C	400
Base- collector grade	$In_{0.53}Ga_{0.47}As$ to In_{0.53}Ga_{0.26}Al_{0.21}As	N: 2×10^{16} cm ⁻³ : Si	240
Pulse doping	InP	$5.6 \times 10^{18} \text{ cm}^{-3}$: Si	30
Collector	InP	N: 2×10^{16} cm ⁻³ : Si	1,630
Subcollector	InP	N: 1×10^{19} cm ⁻³ : Si	~1000 Å

DHBT epitaxy: Abrupt InP Emitter, InGaAs base, InAlGaAs C/B Grade

SI-InP substrate

Key Features:

- Abrupt InP emitter—*benefit unclear*
- Collector setback—eases grade design
- Thin InGaAs in subcollector—*remove heat*
- Thick InP subcollector—*decrease* R_{c,sheet}

Other InP DHBT Layer Structures

InGaAs/InGaAsP/InP grade

InP/InGaAs DHBTs with 341-GHz f_{T} at high current density of over 800 kA/cm²

Minoru Ida, Kenji Kurishima, Noriyuki Watanabe, and Takatomo Enoki

-suitable for MOCVD growth - excellent results

InP/GaAsSb/InP DHBT

11th International Conference on Indium Phosphide and Related Materials 16-20 May 1999 Davos, Switzerland

InP/GaAsSb/InP DOUBLE HETEROJUNCTION BIPOLAR TRANSISTORS WITH HIGH CUT-OFF FREQUENCIES AND BREAKDOWN VOLTAGES

TuA1-3

N. Matine, M. W. Dvorak, X. G. Xu, S. P. Watkins, and C. R. Bolognesi

- does not need B/C grading
- E/B band alignment through GaAsSb alloy ratio (strain) or InAIAs emitter
- somewhat poorer transport parameters to date for GaAsSb base

Single-HBTs: InGaAs base and InGaAs collector

low breakdown:

scaling beyond ~75 GHz digital clock rate very difficult

high collector-base leakage

particularly at elevated temperatures. Serious difficulties in real applications

very high thermal resistance

InGaAs collector and subcollector can reduce with InP subcollector limits power density limits both digital and mm-wave application

Layer	Material	Doping	Thickness (Å)
Emitter cap	In _{0.53} Ga _{0.47} As	$2 \times 10^{19} \text{ cm}^{-3}$: Si	300
N ⁺ emitter	InP	$2 \times 10^{19} \text{ cm}^{-3}$: Si	700
N ⁻ emitter	InP	$8 \times 10^{17} \text{ cm}^{-3}$: Si	500
Emitter-base grade	$In_{0.53}Ga_{0.26}Al_{0.21}As to In_{0.455}Ga_{0.545}As$	P: 4×10^{17} cm ⁻³ : Si N: 8×10^{17} cm ⁻³ : C	233 47
Base	In _{0.53} Ga _{0.47} As	N: 4×10^{19} cm ⁻³ : C	400
Collector	In _{0.53} Ga _{0.47} As	N: $2 \times 10^{16} \text{ cm}^{-3}$: Si	2000
Subcollector	InP	N: 1×10^{19} cm ⁻³ : Si	~1000 Å

process flow

polymide

NiCr

metal 1

SiN

metal 2

BCB

gnd plane

polymide

NiCr

metal 1

E Base Collector sub-collector		
	SI InP	

SiN

metal 2

BCB

gnd plane

- Both junctions defined by selective wet-etch chemistry
- Narrow base mesa allows for low A_C to A_E ratio
- Low base contact resistance— Pd based ohmics with $\rho_C < 10^{-7} \ \Omega \cdot cm^2$
- Collector contact metal and metal '1'
 used as interconnect metal
- NiCr thin film resistors = 40 Ω / \square
- MIM capacitor, with SiN dielectric...
 -- used only for bypass capacitors
- Low loss, low $\varepsilon_r = 2.7$ microstrip wiring environment

- <u>Microstrip wiring environment</u>....
 - has predictable characteristic impedance
 - controlled-impedance interconnects within dense mixed signal IC's
 - ground plane eliminates signal coupling that occurs through on-wafer gnd-return inductance

Completed mesa HBTs & ICs

Mesa Process -- Without Passives & Interconnects Pr Sundararajan

Z. Griffith

Mesa Process -- With Passives & Interconnects

Process front end

transistors, resistors, and M1 interconnects

Process back end

• capacitors, M2, and ground plane formation (M3)

Mesa Process -- Some Pictures

Transistor Figures of Merit

Short-circuit current-gain cutoff frequency

short-circuit current gain: drive input, short output, measure $H_{21}=I_{out}/I_{in}$

$$H_{21}(f) \approx \frac{1}{\left(1/\beta\right) + \left(jf/f_{\tau}\right)}$$

35-

Current-gain cutoff frequency in HBTs

RC terms are quite important for high bandwidth devices ...layers can always be thinned until RC terms dominate !

Definition of power gains and f_{max}

MSG/MAG is of direct relevance in tuned RF amplifier design

Maximum Available Gain

Simultaneously match input and output of device

$$\mathbf{MAG} = \frac{|\mathbf{S}_{21}|}{|\mathbf{S}_{12}|} \left(\mathbf{K} - \sqrt{\mathbf{K}^2 - 1} \right)$$

K = Rollet stability factor

Transistor must be unconditionally stable or MAG does not exist

Maximum Stable Gain

Stabilize transistor and simultaneously match input and output of device

$$\mathbf{MSG} = \frac{|S_{21}|}{|S_{12}|} = \frac{|Y_{21}|}{|Y_{12}|} \approx \frac{1}{\omega C_{cb} \left(R_{ex} + \frac{kT}{qI_c}\right)}$$

Approximate value for hybrid- π model

To first order MSG does not depend on f_{τ} or R_{bb}

For Hybrid- π model, MSG rolls off at 10 dB/decade, while MAG has no fixed slope. So, NEITHER can be used to accurately extrapolate f_{max}

Unilateral Power Gain

Mason's Unilateral Power Gain

Use lossless reactive feedback to cancel device feedback and stabilize the device, then match input/output.

$$\mathbf{U} = \frac{\left| \mathbf{Y}_{21} - \mathbf{Y}_{12} \right|^2}{4 \left(\mathbf{G}_{11} \mathbf{G}_{22} - \mathbf{G}_{21} \mathbf{G}_{12} \right)}$$

U is not changed by pad reactances

For Hybrid- π model, U rolls off at 20 dB/decade

ALL Power Gains must be unity at f_{max}

Monolithic amplifiers are not easily made unilateral, so U of only historical relevance to IC design. U is *usually* valuable for f_{max} extrapolation

Excess Collector Capacitance, Fmax, and Device Utility

The partitioning between C_{cbi} and C_{cbx} will be discussed later.

 C_{cbx} has no effect upon f_{max} or U.

 C_{cbx} has a large impact upon common - emitter MSG,

hence has large impact on usable gain in mm - wave circuits.

 C_{cbx} has a large impact upon digital logic speed.

high f_{max} does not mean low C_{cb} or fast logic

What do we need: f_t , f_{max} , or ... ?

Tuned ICs (MIMICs, RF): fmax sets gain, & max frequency, not ft.

...low ft/fmax ratio makes tuning design hard (high Q) high C_{cbx} reduces MSG

Lumped analog circuits need high & comparable ft and fmax.

C_{cb}/l_c has major impact upon bandwidth

Distributed Amplifiers in principle, fmax-limited, ft not relevant.... (low ft makes design hard)

digital ICs will be discussed in detail later

transistor electrical parameters
HBT DC Characteristics

HBT transit times

Charge densities

electron concentration at emitter edge of base

$$n_p(0) = q N_c e^{-q V_{elactron}/kT} \propto e^{+q V_{bs}/kT}$$

N+

electron current from emitter to collector

$$I_{electron} = qn_p(0)D_n / T_b$$

stored base charge

$$Q_{base} = qA_e n_p(0)T_b / 2$$

... = $I_{electron}T_b^2 / 2D_n = \tau_b I_{electron}$

"Diffusion Capacitance"

$$C_{diffusion} \equiv \frac{dQ_{base}}{dV_{be}} = \frac{dQ_{base}}{dI_c} \frac{dI_c}{dV_{be}} = (\tau_b + \tau_c)g_m$$

$$C_{be, \text{ diffusion}} = g_m(\tau_b + \tau_c) \quad \text{fictitious capacitance between base & emitter modelling charge storage}$$

Collector Transit Time

Emitter Resistance

Emitter resistance : one limiting factor in scaling for speed high speed devices : high $J \rightarrow low (C_{cb}/I_c)$ but high $J \rightarrow excessive (I_E R_{ex})$ voltage drop

Low resistance obtained with $In_xGa_{1-x}As$ emitter caps with high In fraction. Process control for removal of surface oxides is important. Ti/Pt/Au contacts still best at present

Current Gain: surface conduction, not recombination

Surface Conduction:

InGaAs has low surface recombination velocity.

InGaAs has surface pinning near conduction band.

 \rightarrow weak surface inversion layer on base, surface conduction to base contact Problem aggravated by InP emitter, as this also pins near conduction band

Passivation with Silicon Nitride: Ledges

Literature suggests that coating InP with Silicon Nitride produces surface states \sim 200 meV below conduction band edge \rightarrow surface pinning \rightarrow leakage

Use InGaAs/InAIAs grades (sketches below) to form ledges: surface pinning for SiN-coated InAIAs is ~400 meV below band edge.

Not understood; some processes with SiN on InGaAs or InP still have low leakage.

base parameters

Base Transit Time

Base Thickness (Angstroms)

$$\tau_{b} = W_{b}L_{g} / D_{n} - \left(L_{g}^{2} / D_{n} - L_{g} / v_{sat}\right)\left(1 - e^{-W_{b}/L_{g}}\right)$$

where L_g is the grading length :

 $L_g = W_b \left(kT \,/\, \Delta E_g \right)$

Drift - diffusion model correct if $\tau_b >> \tau_m \approx D_n m^* / kT \approx 35 \text{ fs}$

Base Transit Time: Grading Approaches

Dino Mensa Miguel Urteaga Mattias Dahlström

Compositional grading: strained graded InGaAs base Base-emitter junction with InAIAs/InGaAs CSL

UCSB data showed limited improvement with > 50 meV grading Findings similar to that of Ritter Group /Technion Stain effects on bandgap must be included in grade design

52 meV potential drop: $In_{0.455}Ga_{0.545}As \leftrightarrow In_{0.53}Ga_{0.47}As$ (strained)

Doping grading: carbon graded from ~8 to 5E19 Abrupt (InP-InGaAs) base-emitter junction

Analyses by Ishibashi, others, suggests that abrupt launcher has minimal effect on transit time in > 30 nm bases

Doping grading is only effective for degenerate base doping; otherwise large doping change induces only small field but requires large sacrifice in base sheet resistance

UCSB has used both approaches; neither appears to be conclusively superior .

Limits on Base Doping

Loss of current gain due to Auger Recombination At high dopings, bulk recombination dominated by Auger

 $\tau_{\text{Auger}} \propto 1/N_A^2$ Since $\tau_{\text{base}} \propto 1/T_B^2 \implies \beta \propto 1/(N_A T_B)^2 \propto 1/\rho_{sheet}^2$ For doping > 10²⁰ / cm³, we observe more rapid decrease

For doping > 10^{20} / cm³, we observe more rapid decrease of β than $1/\rho_{sheet}^2$.

Causes : effect of high carbon concentration on strain ? very low acceptor ionization ?

base-collector RC parasitics

Base-Collector Distributed Model: exact

This "mesh model" can be entered into a microwave circuit simulator (e.g. Agilent ADS) to predict f_{max} , etc.

Components of Rbb and Ccb

Pulfrey / Vaidyanathan fmax model

$$f_{max} = \sqrt{\frac{f_{\tau}'}{8\pi\tau_{cb}}},$$

$$\frac{1}{2\pi f_{\tau}'} = \tau_b + \tau_c + \frac{kT}{qI_c} \ (C_{je} + C_{cb}),$$

$$\tau_{cb} = C_{cb,e} \left(R_{cont} + R_{gap} + R_{spread} \right) + C_{cb,gap} \left(R_{cont} + R_{gap} / 2 \right) + \left(R_{cont} \| R_{vert} \right) C_{cb,ext}$$

Note that the external capacitance $C_{cb,ext}$ is charged through a relatively low resistance, less than R_{vert} . $C_{cb,ext} \left(R_{cont} \| R_{vert} \right) < C_{cb,ext} R_{vert}$ $= \frac{\varepsilon}{T_c} \frac{1}{\rho_{contact}}$...the associated charging time is relatively small

 $C_{cb,ext}$ has moderate effect upon f_{max} , but big impact upon digital and analog speed

collector spacecharge effects

Scaling Laws, Collector Current Density, C_{cb} charging time

$$C_{cb}\Delta V_{LOGIC} / I_{C} = \left(\varepsilon A_{collector} / T_{c} \right) \left(\Delta V_{LOGIC} / I_{C} \right) = \frac{\Delta V_{LOGIC}}{\left(V_{CE} + V_{CE,min} \right)} \left(\frac{A_{collector}}{A_{emitter}} \right) \left(\frac{T_{C}}{2v_{eff}} \right)$$

Collector capacitance charging time scales linearly with collector thickness if $J = J_{max}$

Kirk effect in DHBTs

Decrease in f_{τ} and f_{max} at high J Kirk - effect threshold increases with increased V_{ce}

$$J_{\max} = 2\varepsilon v_{sat} (V_{cb} + V_{cb,\min} + 2\phi) / T_c^2$$
$$\cong 2\varepsilon v_{sat} (V_{ce} + V_{ce,\min}) / T_c^2$$

Increase in $V_{ce,sat}$ with increased J

$$\frac{dV_{ce}}{dI_c} = R_{\text{space-charge}} = \frac{T_c^2}{2\varepsilon v_{sat} A_{effective}}$$

where the effective collector

current flux area is

$$A_{effective} \approx L_E (W_E + 2T_C)$$

Collector Transit Time

From best fit to RF data, or from Kirk current density vs. collector voltage: In GaAs: $v_{eff} \approx 3.5 \cdot 10^7$ cm/s for ~ 200 nm layers. In P: $\approx 3.5 \cdot 10^7$ cm/s for ~ 100 - 200 nm layers

From elementary electrostatics (refer to sketch)

Current-induced Collector Velocity Overshoot

Increased current reduces Γ - L scattering, increases v(x) in early part of collector \Rightarrow reduced collector transit time

 $Q_{base} = I_c \cdot \int_{0}^{T_c} \frac{(1 - x/T_c)}{v(x)} dx$ is not exactly proportional to I_c

correct definition of collector transit time is

$$\tau_{\rm c} = \frac{\partial Q_{base}}{\partial I_c} \text{ not } \tau_{\rm c} = \frac{Q_{base}}{I_c}$$

Nakajima, H. "A generalized expression for collector transit time of HBTs taking account of electron velocity modulation," Japanese Journal of Applied Physics, vo. 36, Feb. 1997, pp. 667-668

CAUTION : observed nonlinear τ_{ec} variation is also in part due to modulation in emitter ideality factor with bias current $(1/g_m \text{ often does not vary as } R_{ex} + nkT/qI_E)$, and due to variation of C_{je} with bias.

Transit time Modulation Causes C_{cb} Modulation

$\textbf{Transit time Modulation} \rightarrow \textbf{Negative Resistance} \rightarrow \textbf{Infinite Gain}$

equivalent circuit model

Transistor Hybrid-Pi equivalent circuit model

Comments regarding the Hybrid-Pi model

The common - base (T) model directly models frequency - dependent transport

The hybrid - pi model results from a fit to the T to first order in ω .

The capacitance $C_{be,diff}$ models the effect of $(\tau_b + \tau_c)$ on input impedance

The g_m generator nevertheless also requires an associated ~ $(0.2 \cdot \tau_b + \tau_c)$ delay (important in fast IC design)

 $R_{bb}C_{cbi}$ and C_{cbx} represent fits to the distributed *RC* base - collector network

thermal considerations

Fast DHBTs: high current density \rightarrow high temperature

Ian Harrison U. Nottingham

Conclusions...

Minimize InGaAs thickness in subcollector Use narrow emitter stripes

Thermal conductivity of common materials

Where is the heat generated, how is it removed ?

 $J_{E} \; x \; V_{CE} \mbox{=} 6 \; x \; 1.5 \; V \mbox{=} 9 \; m W/ \mu m^2 \;$ In the intrinsic collector

Main heat transport is through the subcollector to the substrate Up to 30 % heat transport up through the emitter contact

For small thermal resistance: InP collector, InP subcollector, only thin InGaAs in subcollector, InP emitter, narrow emitter junction for radial heat flow

Experimental Measurement of Temperature Rise

Example of Thermal Data

Current Hogging and Emitter Finger Ballasting

Yun Wei

Assume initial temperature difference δT between 2 fingers

$$\frac{dV_{be}}{dT} = -\phi \text{ at constant } I_c$$

$$\delta T \Longrightarrow \delta V_{be} = \frac{dV_{be}}{dT} \delta T \implies \delta I_C = \frac{1}{R_{ex} + R_{ballast} + kT / qI_E} \delta V_{be}$$

$$\Rightarrow \delta P = V_{CE} \delta I_C \implies \delta T = \theta_{JA} \delta P$$

Unstable unless

$$K_{\text{thermal stability}} = \left| \frac{dV_{be}}{dT} \right| \frac{V_{CE} \theta_{JA}}{R_{ex} + R_{ballast} + kT / qI_E} < 1$$

W. Liu, H-F Chau, E. Beam III, "Thermal properties and thermal instabilities of InP-based heterojunction bipolar transistors", IEEE Transactions on Electron Devices, vol.43, (no.3), IEEE, March 1996. p.388-95.

Thermal runaway within a finger

With long emitter finger, current-crowding can occur within finger

- Long finger: temperature can vary along length of emitter finger loss of strong thermal coupling
- •Temperature gradients along finger results in nonuniform current distribution center of stripe gets hotter \rightarrow carries more current \rightarrow gets hotter $\rightarrow \dots$ Premature Kirk-effect-induced collapse in f_t.

Measurement of Current hogging in multi-finger DHBT

W. Liu, H-F Chau, E. Beam III, "Thermal properties and thermal instabilities of InP-based heterojunction bipolar transistors", IEEE Transactions on Electron Devices, vol.43, (no.3), IEEE, March 1996. p.388-95.

mesa transistor results

InP Mesa DHBTs; 600 nm Emitter Scaling Generation

Zach Griffith

DC, RF performance—150 nm collector, 47 nm transition

DC, RF performance—120 nm collector, 42 nm transition 30 nm base

DC, RF performance—100 nm collector, 42 nm transition

Summary of HBT performance: April 2005

popular metrics : $(f_{\tau} + f_{\max})/2$ $\sqrt{f_{\tau} f_{\max}}$ $(1/f_{\tau} + 1/f_{\max})^{-1}$

better metrics : power amplifiers : PAE, associated gain, $mW/\mu m$ low noise amplifiers : F_{min} , associated gain, associated DC power digital :

 f_{clock}, hence $(C_{cb}\Delta V / I_c),$ $(R_{ex}I_c / \Delta V),$ $(R_{bb}I_c / \Delta V),$ $(\tau_b + \tau_c)$

Comparison with InP HEMTs

HBTs have better breakdown than HEMTs \rightarrow use HBTs for power amplifiers

HEMTs have better noise than HBTs \rightarrow use HEMTs for LNAs

transistor scaling theory

HBT scaling: layer thicknesses

2:1 improved device speed: keep G's, R's, I's, V's constant, reduce 2:1 all C's, τ 's

HBT scaling: lithographic dimensions

2:1 improved device speed: keep G's, R's, I's, V's constant, reduce 2:1 all C's, au 's

Base Resistance R_{bb} must remain constant $\rightarrow L_e$ must remain ~ constant

$$R_{bb} = R_{gap} + R_{spread} + R_{contact}$$
$$\cong R_{contact}$$
$$= \sqrt{\rho_{sheet} \rho_{c,vertical}} / 2L_E$$

Ccb/Area has been **doubled** ...we had wanted it 2:1 smaller ...must make area= L_eW_e 4:1 smaller \rightarrow must make W_e & W_c 4:1 smaller

HBT scaling: emitter resistivity, current density

2:1 improved device speed: keep G's, R's, I's, V's constant, reduce 2:1 all C's, au 's

Emitter Resistance R_{ex} must remain constant but emitter area= L_eW_e is 4:1 smaller resistance per unit area must be 4:1 smaller

Collector current must remain constant but emitter area= L_eW_e is 4:1 smaller and collector area= L_cW_c is 4:1 smaller current density must be 4:1 larger

Assume $W_C \sim W_E$

increase current density 4:1 reduce emitter resistivity 4:1

Bipolar Transistor Scaling Laws

Scaling Laws: design changes required to double transistor bandwidth

	-
key device parameter	required change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter resistance per unit emitter area	decrease 4:1
current density	increase 4:1
base contact resistivity (if contacts lie above collector junction)	decrease ~4:1
base contact resistivity (if contacts do not lie above collector junction)	unchanged

digital / mixed signal IC design and relationship to transistor

We design HBTs for fast logic, not for high f_ & f_max

Gate Delay Determined by :

Depletion capacitance charging through the logic swing

$$\left(\frac{\Delta V_{LOGIC}}{I_{C}}\right) \left(C_{cb} + C_{be, \text{depletion}}\right)$$

Depletion capacitance charging through the base resistance

 $R_{bb} \left(C_{cbi} + C_{be,depletion} \right)$

Supplying base + collector stored charge

through the base resistance

$$R_{\rm bb} (\tau_b + \tau_c) \left(\frac{I_C}{\Delta V_{\rm LOGIC}} \right)$$

The logic swing must be at least

$$\Delta V_{LOGIC} > 4 \cdot \left(\frac{kT}{q} + R_{ex}I_c\right)$$

 $(\tau_b + \tau_c)$ typically 10 - 25% of total delay; Delay not well correlated with f_{τ}

$$(\Delta V_{LOGIC} / I_C) (C_{cb} + C_{be,depl})$$
 is 55% - 80% of total.

High (I_C / C_{cb}) is a key HBT design objective. $J_{\max,Kirk} = 2\varepsilon \overline{v}_{electron} (V_{ce, \text{operating}} + V_{ce, \text{full depletion}}) / T_c^2$ $\Rightarrow \frac{C_{cb} \Delta V_{LOGIC}}{I_C} = \frac{\Delta V_{LOGIC}}{2V_{CE, \min}} \left(\frac{A_{\text{collector}}}{A_{\text{emitter}}}\right) \left(\frac{T_C}{2\overline{v}_{electron}}\right)$ $R_{ex} \text{ must be very low for low } \Delta V_{\text{logic}} \text{ at high } J$

InP HBT Roadmaps: 40 / 80 / 160 Gb/s digital clock rate

Parameter	Gen. 1	Gen. 2	Gen. 3	
MS-DFF speed	60 GHz	121 GHz	260 GHz	
Emitter Width	1 μm	0.8 µm	0.3 μm	←
Parasitic Resistivity	50 Ω-μm ²	20 Ω-μm ²	5Ω -μm ²	Key scaling challenges
Base Thickness	400Å	400Å	300 Å	emitter & base contact resistivity
Doping	$5 \ 10^{19} / \mathrm{cm}^2$	7 10 ¹⁹ /cm ²	7 10 ¹⁹ /cm ²	$current density \rightarrow device neating$
Sheet resistance	750 Ω	700 Ω	$700 \ \Omega$	Collector-base junction width scaling
Contact resistance	150 Ω-µm ²	20 Ω-μm ²	20 Ω-μm ²	
Collector Width	3 μm	1.6 µm	0.7 μm	←
Collector Thickness	3000 Å	2000 Å	1000 Å	
Current Density	$1 \text{ mA}/\mu\text{m}^2$	$2.3 \text{ mA}/\mu\text{m}^2$	$12 \text{ mA}/\mu\text{m}^2$	
A _{collector} /A _{emitter}	4.55	2.6	2.9	
f_{τ}	170 GHz	248 GHz	570 GHz	
$f_{\rm max}$	170 GHz	411 GHz	680 GHz	
I_E / L_E	1 mA/µm	1.9 mA/µm	3.7 mA/µm	
τ_{f}	0.67 ps	0.50 ps	0.22 ps	
C_{cb}/I_c	1.7 ps/V	0.62 ps/V	0.26 ps/V	
$C_{cb}\Delta V_{ m logic}$ / I_c	0.5 ps	0.19 ps	0.09 ps	key figures of merit
R_{bb} /($\Delta V_{ m logic}$ / I_c)	0.8	0.68	0.99	for logic speed
$C_{je}(\Delta V_{ m logic} / I_{_C})$	1.7 ps	0.72 ps	0.15 ps	
$R_{ex}/(\Delta V_{\text{logic}}/I_{c})$	0.1	0.15	0.17	

Why isn't base+collector transit time so important for logic?

Diffusion capacitance: $\partial Q_{\text{base}} = (\tau_b + \tau_c) \delta I_C$ $= (\tau_b + \tau_c) \frac{dI_C}{dV_{be}} \delta V_{be}$ $=\frac{(\tau_b + \tau_c)I_C}{kT/q}\delta V_{be}$...active only over kT/q voltage swing. Under Large - Signal Operation : $\Delta Q_{\text{base}} = (\tau_b + \tau_c) I_C$ $=\frac{(\tau_b + \tau_c)I_{dc}}{\Delta V_{LOGIC}}\Delta V_{LOGIC}$ Large-signal diffusion capacitance reduced by ratio of $\left(\frac{\Delta V_{LOGIC}}{kT/a}\right)$, which is ~ 10:1

Depletion capacitances present over full voltage swing, no large-signal reduction

Scaling Laws, Collector Current Density, C_{cb} charging time

$$C_{cb}\Delta V_{LOGIC} / I_{C} = \left(\varepsilon A_{collector} / T_{c} \right) \left(\Delta V_{LOGIC} / I_{C} \right) = \frac{\Delta V_{LOGIC}}{\left(V_{CE} + V_{CE,min} \right)} \left(\frac{A_{collector}}{A_{emitter}} \right) \left(\frac{T_{C}}{2v_{eff}} \right)$$

Collector capacitance charging time scales linearly with collector thickness if $J = J_{max}$

Key HBT Scaling Limit \rightarrow **Emitter Resistance**

ECL delay not well correlated with f_{τ} or f_{max} Largest delay is charging C_{ch} $C_{cb} \frac{\Delta V_{\text{logic}}}{I_c} = \frac{\varepsilon A_{\text{collector}}}{T_c} \frac{\Delta V_{\text{logic}}}{J_c A_{\text{uniture}}}$; where $J_{e,\text{max}} \propto 1/T_c^2$. $\rightarrow J_e \cong 10 \text{ mA}/\mu\text{m}^2$ needed for 200 GHz clock rate Voltage drop of emitter resistance becomes excessive $R_{ex}I_{c} = \rho_{ex}J_{e} = (15 \ \Omega \cdot \mu m^{2}) \cdot (10 \ mA/\mu m^{2}) = 150 \ mV$ → considerable fraction of $\Delta V_{logic} \cong 300 \text{ mV}$ Degrades logic noise margin

→ $\rho_{ex} \le 7 \ \Omega \cdot \mu m^2$ needed for 200 GHz clock rate

Breakdown: Thermal failure is more significant than BVCEO

Dissipation limits power density $P/A_E = J_E V_{ce} \propto f_{clock}^2 V_{CE}$ $\Rightarrow V_{max} \propto 1/\theta_{ja} f_{clock}^2$

Low thermal resistance is critical. DHBTs are superior to SHBTs.

digital IC results

Digital circuits: towards 200 GHz clock rate

142 GHz latch from NNIN @ UCSB, 150 GHz ICs from UCSB/GSC/RSC 200 GHz is the next goal

underlying technology: 400-500 GHz InP transistors

Static Frequency Divider: Standard Digital Benchmark

ECL Master-Slave Latch with Inverting Feedback

 \rightarrow much more strenuous test than 2:1 mux or ring oscillator

Hierarchy of ECL Static Frequency Divider

Master-Slave Latch: transition-clocked memory element

2:1 Static Frequency Divider

ground straps suppress slot mode, but multiple ground breaks in complex ICs produce ground return inductance ground vias suppress microstrip mode, wafer thinning suppresses substrate modes

Microstrip has high via inductance, has mode coupling unless substrate is thin.

We prefer (credit to NTT) thin-film microstrip wiring, inverted is best for complex ICs

M. Urteaga, Z. Griffith, S. Krishnan

UCSB / RSC / GCS 150 GHz Static Frequency Dividers

IC design: Z. Griffith, UCSB HBT design: RSC / UCSB / GCS IC Process / Fabrication: GCS Test: UCSB / RSC / Mayo

UCSB 142 GHz Master-Slave Latches (Static Frequency Dividers)

Static 2:1 divider: Standard digital benchmark. Master-slave latch with inverting feedback. Performance comparison between digital technologies

UCSB technology 2004: InP mesa HBT technology 12-mask process 600 nm emitter width 142 GHz maximum clock.

Implications:

160 Gb/s fiber ICs

100 + Gb/s serial links

Target is 260 GHz clock rate at 300 nm scaling generation

Reducing Divide-by-2 Dissipation

C_{cb}/I_c Charging Rate: ECL is much better than CML

Phase II divide by 2—Ultra low power CML divider

Simulated divider speed....

With Collector Pedestal $A_{jbe} = 1.0 \ \mu m^2$, $f_{max} = 100 \ GHz$

 $P_{divider \ core,} \approx 31 \ \mathrm{mW}$

mm-wave amplifiers

Tuned Amplifier Design for Maximum Gain

If Device is Unconditionally Stable

Simultaneously match input and output of device

$$\mathbf{MAG} = \frac{|\mathbf{S}_{21}|}{|\mathbf{S}_{12}|} \left(\mathbf{K} - \sqrt{\mathbf{K}^2 - 1} \right)$$

K = Rollet stability factor

generator

R_{gen}

gen

lossless

matching

network

If transistor is unconditionally stable, circuit gain is transistor MAG

If Device is Potentially Unstable

Stabilize transistor and simultaneously match input and output of device

$$\mathbf{MSG} = \frac{|\mathbf{S}_{21}|}{|\mathbf{S}_{12}|} = \frac{|\mathbf{Y}_{21}|}{|\mathbf{Y}_{12}|}$$

If transistor is potentially unstable, circuit gain is transistor MSG

Design for maximum gain is rare; usually one designs for maximum saturated power or for minimum noise. Gain is then less, discussion is beyond our scope

Common-Base Has Highest Gain, but Layout Parasitics Matter

mm-wave IC results

Deep Submicron Bipolar Transistors for 140-220 GHz Amplification

175 GHz Single-Stage Amplifier

6.3 dB gain at 175 GHz

172 GHz Common-Base Power Amplifier

176 GHz Two-Stage Amplifier

measurement issues

140-220 & 220-330 GHz On-Wafer Network Analysis

• HP8510C VNA, *Oleson Microwave Lab* mm-wave Extenders

coplanar wafer probes made by:
 GGB Industries, Cascade Microtech

•connection via short length of waveguide

 Internal bias Tee's in probes for biasing active devices

• 75-110 GHz set-up is similar

• DC-50 GHz set is standard coaxbased system: SNR ok only to ~30 GHz

GGB Wafer Probes 330 GHz available with bias Tees

High Frequency HBT Gain Measurements : Standard Pads

Measuring wideband transistors is very hard ! Much harder than measuring amplifiers. Determining fmax in particular is extremely difficult once it exceeds 400 GHz

Standard "short pads"

must strip pad capacitance
must strip pad inductance--or ft will be too high !
cal bad above ~25 GHz due to substrate coupling
make pads small, or lift them off the InP !
cal bad above ~25 GHz due to probe coupling
use small probe pitch, use shielded (infinity) probes

High Frequency HBT Measurements : On-Wafer LRL

Extended Reference planes

transistors placed at center of long on-wafer line LRL standards placed on wafer large probe separation \rightarrow probe coupling reduced still should use the best-shielded probes available

Problem: substrate mode coupling

method will FAIL if lines couple to substrate modes \rightarrow method works very poorly with CPW lines need on wafer thin-film microstrip lines Ground Plane

Rf device structure before gnd plane evaporation

Rf device structure after gnd plane evaporation

IOW E

CPW

Line-reflect-line on-wafer cal. standards

Note that calibration is to line Zo : line Zo is complex at lower frequencies, and must be determined

ground straps suppress slot mode, but multiple ground breaks in complex ICs produce ground return inductance ground vias suppress microstrip mode, wafer thinning suppresses substrate modes

Microstrip has high via inductance, has mode coupling unless substrate is thin.

We prefer (credit to NTT) thin-film microstrip wiring, inverted is best for complex ICs

M. Urteaga, Z. Griffith, S. Krishnan

advanced fabrication processes

Parasitic Reduction for Improved InP HBT Bandwidth

Yield & Scaling Problems: Liftoff, Undercut, Planarity

planarization failure: interconnect breaks

Yield quickly degrades as emitters are scaled to submicron dimensions

Controlling Emitter Undercut: Wet-Etch Mesa Process

Smaller emitters \rightarrow lower yield. Need better fabrication process

Manufacturable Emitter Dielectric Sidewall Processes

Urteaga, Rodwell, Pierson, Rowell, Brar, Nguyen, Nguyen: UCSB, RSC, GCS

Frequency (GHz)

1st-Generation Polycrystalline Extrinsic Emitter

Approach

Wide emitter contact for low emitter access resistance Thick extrinsic base for low base resistance Self-aligned refractory base contacts

Enabling Technology

Low-resistance polycrystalline InAs In-band Fermi-level pinning eliminates barriers

Challenges

Very complex process Hydrogen passivation Resistance of Refractory contacts

C. Kadow

2nd-Generation Epitaxial Extrinsic Emitter

1st-Generation Collector Pedestal Implant

HBT regrowth

Reduced extrinsic Ccb Reduced thermal resistance

~2:1 reduction in collector base capacitance

Pedestal: Projected Performance @ 300 nm

RGE+Pedestal: Projected Performance @ 250 nm

$$\rho_{c,emitter} = 6 \,\Omega - \mu m^2$$

$$\Rightarrow R_{ex} A_E \sim 3 \,\Omega - \mu m^2$$

$$\rho_{c,base} = 10 \,\Omega - \mu m^2$$

$$J_e = 17 \,\text{mA}/\mu m^2$$

0.3 ps wiring delay on collector bus

$$f_{clock (divider)} \cong 330 \text{ GHz}$$

$$f_{\tau} = 650 \text{ GHz} \quad f_{max} = 900 \text{ GHz}$$

$$C_{cb} / I_{c} = 0.17 \text{ ps/V}$$

$$V_{br,ceo} \cong 4 \text{ V}$$

InP HBT now: at 500 nm scaling generation

455 GHz f_t & 485 GHz f_{max}
150 GHz static dividers & 180 GHz amplifiers demonstrated
200 GHz digital latches & 300 GHz amplifiers are feasible

InP HBT: future, at 125 nm scaling generation

2:1 increase in bandwidth (?)
~1 THz f_t & f_{max}, 400 GHz digital latches & 600 GHz amplifiers ???
demands 4:1 better Ohmic contacts
demands 4:1 increased current density.

Applications:

160+ Gb/s fiber ICs,
300 GHz MIMICs for communications, radar, & imaging GHz ADCs / DACs / DDFS / etc.
& applications unforeseen & unanticipated

End