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A Risk-Security Tradeoff in Graphical
Coordination Games
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Abstract—A system relying on the collective behavior of
decision makers can be vulnerable to a variety of attacks.
How well can a system operator protect performance in
the face of these risks? We frame this question in the
context of graphical coordination games, where the agents
in a network choose between two conventions and derive
benefits from coordinating neighbors, and system perfor-
mance is measured in terms of the agents’ welfare. In
this article, we assess an operator’s ability to mitigate two
types of attacks: 1) broad attacks, where the adversary
distributes targeted incentives to all agents in the network;
and 2) focused attacks, where the adversary can force a
selected subset of the agents to commit to a prescribed
convention. The system operator can among a class of dis-
tributed algorithms that define the local interactions. Our
main contribution characterizes the operator’s fundamental
tradeoff between security against worst-case broad attacks
and vulnerability from focused attacks. We show that this
tradeoff significantly improves when the operator selects a
decision-making process at random. This article highlights
the design challenges a system operator faces in maintain-
ing resilience of networked distributed systems.

Index Terms—Game theory, networked control systems,
network security.

I. INTRODUCTION

N ETWORKED distributed systems typically operate with-
out centralized planning or control, and instead rely on

local interactions and communication among comprising agents.
These systems arise in a variety of engineering applications such
as teams of mobile robots and sensor networks [2]–[4]. They
are also prevalent in social dynamics [5], [6] and biological
populations [7].

The distributed nature of these systems may leave the individ-
ual agents vulnerable to adversarial manipulations. Such pertur-
bations can potentially lead to unwanted outcomes. For example
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in social networks, individual opinions can be shaped from
external information sources, resulting in a polarized society [8],
[9]. When feasible, a system operator takes measures to mitigate
adversarial influences. The literature on cyber-physical system
security studies many aspects of this interplay. For instance,
optimal controllers are designed to mitigate denial-of-service,
estimation, and deception attacks [10]–[14].

This article investigates measures a system operator can take
to mitigate adversarial influences when the underlying system
is a graphical coordination game [6], [15]. Agents in a network
decide between two choices x or y. One may think of these
choices as two competing products, e.g., iPhone versus Android,
two conflicting social norms, or two opposing political parties.
Each agent derives a positive benefit from interactions with
coordinating neighbors, and zero benefits from miscoordinat-
ing ones. A measure of system efficiency is the ratio of total
benefits of all agents to the maximal attainable benefits over all
configurations of choices.

In the absence of adversaries, the goal of a system operator is
to design local decision-making algorithms for the agents so that
the emergent collective behavior optimizes system efficiency.
One algorithm that achieves this goal in graphical coordination
games is log-linear learning [16]–[18]. More formally, the agents
follow a “perturbed” best reply dynamics where the agents’
local objectives are precisely equal to their local welfare. We
seek to address the question of whether this particular algorithm
is robust to adversarial influences. That is, can an adversary
manipulate their decision-making processes to render the sys-
tem suboptimal? If so, how can the operator modify the base
algorithms to mitigate such attacks?

We consider two adversarial attack models—broad and fo-
cused attacks. In broad attacks, the adversary attaches impostor
nodes to every agent in the network (hence, broad), influencing
their decision-making process. This could depict distributing
political ads with the intention of polarizing voters. In focused
attacks, the adversary targets a specific set of agents in the
network, forcing them to commit to x or y. These targeted
fixed agents consequently do not update their choices over time
but still influence the decisions of others. They could portray
loyal consumers of a brand or product, or staunch supporters
of a political party. Fixed agents and their effects on system
performance have been extensively studied in the context of
opinion dynamics and optimization algorithms [14], [19], [20].

This article concerns the consequences a system operator
faces in making modifications to the local algorithms. In par-
ticular, we answer the question “if the operator succeeds in
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protecting the system from one type of attack, how vulnerable
does it leave the system to the other?” We identify the funda-
mental tradeoffs between performance guarantees against broad
attacks and focused attacks.

Specifically, we provide a characterization of worst-case risk
metrics from both types of adversarial attacks as a function of
the operator’s algorithm design parameter (see Section III). We
define risk in this article as the system’s distance to optimal
efficiency. By worst-case, here, we mean the maximum risk
among all possible connected network topologies subject to
any admissible adversarial attack (see Section V). These results
appeared in an earlier version of this article [1] for deterministic
design parameters. The present manuscript extends the analysis
to randomized operator designs (see Sections IV and VI). In
particular, randomized operator strategies significantly improve
the set of attainable risk levels and their associated optimal
tradeoffs (see Section IV).

This article offers a system operator’s perspective of ensuring
security against adversarial influences. This is in contrast to
a body of previous works that studied system vulnerabilities
from an adversarial perspective [21], [22]. These works analyze
the extent to which system efficiency can be degraded as a
function of the adversary’s strength, intelligence, and sophisti-
cation. However, they do not consider any mitigation strategies
a system operator could implement. Furthermore, these results
restricted attention to specific graph structures, namely ring
graphs, whereas the analysis in this article considers adversarial
influence on any graph topology.

II. PRELIMINARIES

A. Graphical Coordination Games

A graphical coordination game is played between a set of
agents N = {1, . . . , N} over a connected undirected network
G = (N , E) with node set N and edge set E ⊂ N ×N . Agent
i’s set of neighbors is written as Ni = {j : (i, j) ∈ E}. Each
agent i selects a choice ai from its action set Ai = {x, y}.
The choices of all the agents constitutes an action profile a =
(a1, . . . , aN ), and we denote the set of all action profiles as
A = ΠN

i=1Ai. The local interaction between two agents (i, j) ∈
E is based on a 2× 2 matrix game, described by the payoff
matrix V : {x, y}2 → R

Player j
x y

Player i
x
y
1 + αsys, 1 + αsys 0, 0
0, 0 1, 1
–——————————- (1)

where αsys > 0 is the system payoff gain. It indicates that x is an
inherently superior product over y when users coordinate. Here,
agents would rather coordinate than not, but prefer to coordinate
onx. Agent i’s benefit is the sum of payoffs derived from playing
the game (1) with each of its network neighbors

Wi(ai, a−i) :=
∑
j∈Ni

V (ai, aj). (2)

A measure of system welfare defined over A is

W (a) :=

N∑
i=1

Wi(ai, a−i) (3)

which is simply the sum of all agent benefits. The system
efficiency for action profile a ∈ A is defined as

W (a)

maxa′∈A W (a′)
. (4)

For A = {x, y}N , the all-x profile �x maximizes welfare. This
does not necessarily hold for arbitrary action spaces.

B. Log-Linear Learning Algorithm

Log-linear learning is a distributed stochastic algorithm gov-
erning how players’ decisions evolve over time [15]–[17]. It may
be applied to any instance of a game with each player having
a well-defined local utility function Ui : A → R over a set of
action profiles A with an underlying interaction graph G. That
is, agent i’s local utility is a function of its action ai and actions
of its neighbors in G.

Agents update their decisions a(t) ∈ A over discrete time
steps t = 0, 1, . . .. Assume a(0) is arbitrarily determined. For
step t ≥ 1, one agent i is selected uniformly at random from
the population. It updates its action to ai(t) = z ∈ Ai with
probability

exp(βUi(z, a−i(t− 1))∑
z′∈Ai

exp(βUi(z′, a−i(t− 1))
(5)

where β > 0 is the rationality parameter. All other agents repeat
their previous actions: a−i(t) = a−i(t− 1). For large values of
β, i selects a best response to the previous actions of others
with high probability, and for values of β near zero, i random-
izes among its actions Ai uniformly at random. This induces
an irreducible Markov chain over the action space A, with a
unique stationary distribution πβ ∈ Δ(A). The stochastically
stable states (SSS) a ∈ A are the action profiles contained in
the support of the stationary distribution in the high rationality
limit: they satisfy π(a) = limβ→∞ πβ(a) > 0. Such a limiting
distribution exists and is unique [16], [23], [24]. We write the
set of stochastically stable states as

LLL(A, {Ui}i∈N ;G). (6)

For graphical coordination games, the log-linear learning al-
gorithm specified by the action set A = {x, y}N and utili-
ties {Wi}i∈N selects the welfare-maximizing profile �x as the
stochastically stable state irrespective of the graph topology G.
This can be shown using potential game arguments [17]. That
is, �x = LLL(A, {Wi}i∈N ;G) for all G ∈ GN , where GN is the
set of all connected undirected graphs on N nodes.

C. System Operator

If the agents’ local decision-making rules can be manipulated,
optimality of the log-linear learning algorithm may no longer
hold true. We consider a system operator able to alter the
agents’ local utility functions with the goal of mitigating the
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loss of system efficiency from adversarial manipulations. Such
modifications to distributed algorithms could represent updates
to software features, for example.

In particular, we consider the class of local utility functions
{Uα

i }i∈N parameterized by a payoff gain α > 0. They take the
same form as the benefit function (2), except the system operator
chooses a perceived gain α to replace αsys. These local utilities
change the underlying game interactions between agents, but do
not change the experienced benefits of coordination, i.e., these
are still given by (1). As such, the system’s welfare and efficiency
(3), (4) remain defined in terms of the system payoff gain αsys.

III. MODELS OF ADVERSARIAL INFLUENCE

In this section, we outline two models of attacks in graphical
coordination games—broad and focused attacks. The system
operator specifies the local utility functions{Uα

i } that govern the
log-linear learning algorithm by selecting the perceived payoff
gainα > 0. Our goal is to assess the performance of this range of
algorithms on two corresponding worst-case risk metrics, which
we will define. We, then, identify fundamental tradeoff relations
between mitigating these two risk metrics.

A. Broad Attacks and Worst-Case Risk Metric

We consider a scenario where the system is subject to broad
attacks. For each agent in the network, the adversary attaches a
single impostor node that acts as a neighbor that always plays
x or y. These nodes are not members of the network but affect
the decision making of agents that are. Let Sx ⊆ N (Sy) be the
set of agents targeted with an impostor x (y) node. We call the
target set S = (Sx, Sy). Any target set satisfies Sx ∩ Sy = ∅

andSx ∪ Sy = N . We callT (G) the set of all possible target sets
S on the graph G. Given α > 0, the agents’ perceived utilities
are

Ũα
i (ai, a−i) :=

{
Uα
i (ai, a−i) + 1(ai = y) i ∈ Sy

Uα
i (ai, a−i) + (1 + α)1(ai = x) i ∈ Sx

.

(7)
In the notation of (6), the set of stochastically stable states is

written LLL(A, {Ũα
i }i∈N ;G). However, in the context of broad

attacks, we will refer to it as LLL(A, α, S;G). The induced
network efficiency is defined as

Jb(α, S;G) :=
mina∈LLL(A,α,S;G) W (a)

maxa′∈A W (a′)

=
mina∈LLL(A,α,S;G) W (a)

(1 + αsys)|E|

(8)

which is the ratio of the welfare induced by the welfare-
minimizing SSS to the optimal welfare. The second equality
abovementioned is due to the fact that optimal welfare is at-
tained at �x (all play x). We reiterate that the impostor nodes
do not contribute to the system efficiency. They serve only to
possibly modify the stochastically stable state. The risk from
broad attacks faced by the system operator in choosing gain α
is defined as

Rb(α, S;G) := 1− Jb(α, S;G). (9)

Risk measures the distance from optimal efficiency under op-
erating gain α. Fig. 1(a) illustrates an example of a three-node
network subject to a broad attack. The extent to which systems
are susceptible to broad attacks is captured by the following
definition of worst-case risk.

Definition 1: The worst-case risk to broad attacks is
given by

R∗
b(α) := max

N≥3
max
G∈GN

max
S∈T (G)

R b(α, S;G). (10)

The quantity R∗
b(α) is the cost metric that the system operator

wishes to reduce given uncertainty of the network structure and
target set. In other words, the adversary observes the design
choice of the system operator, and chooses an optimal attack
strategy.

Theorem 1: Let α > 0. The worst-case broad risk is

R∗
b(α)=

⎧⎪⎪⎨
⎪⎪⎩
1−

(
k

k+1

)(
1

1+αsys

)
, if α ∈ Ik, for k = 1, 2, . . .

1− 1
1+αsys

, if α ∈
[
1, 3

2

]
0, if α > 3

2
(11)

where

Ik :=

(
k − 1

k
,

k

k + 1

]
. (12)

An illustration of R∗
b is given in Fig. 2(a), along with the

graphs and target sets that achieve the worst-case risks. For
sufficiently high gains α > 3

2 , the system is safeguarded from
any broad attack, i.e., the worst-case risk is zero. The technical
results needed for the proof are given in Section V.

B. Focused Attacks and Worst-Case Risk Metric

An adversary is able to choose a strict subset of agents and
force them to commit to prescribed choices. This causes them
to act as fixed agents, or agents that do not update their choices
over time. One could consider this as allowing the adversary
an unlimited number of impostor nodes (instead of one) at its
dispatch to attach to each agent in the subset, thereby solidifying
their choices. This focused influence on a single agent is stronger
than the influence a broad attack has on a single agent in the
sense that the latter type does not require the agent to commit to
a choice.

Let Fx ⊂ N (Fy) be the set of fixed x (y) agents. We call
the fixed set F = (Fx, Fy), which satisfies Fx ∩ Fy = ∅ and
Fx ∪ Fy ⊂ N . We call F(G) the set of all feasible fixed sets on
a graphG ∈ GN . A fixed setF ∈ F(G) restricts the action space
to AF , where (AF )i = {x} ({y}) ∀i ∈ Fx (Fy) and (AF )i =
{x, y} ∀i /∈ F . We assume the adversary selects at least one
fixed agent. The strict subset assumption avoids pathological
cases (e.g., alternating x and y fixed nodes for an entire line
network yields an efficiency of zero).

The set of stochastically stable states given a fixed set F is
written as LLL(AF , {Uα

i }i∈N ;G). However for brevity, we will
refer to it as LLL(AF , α;G). The induced efficiency is

Jf (α, F ;G) :=
mina∈LLL(AF ,α;G) W (a)

maxa∈AF
W (a)

(13)
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Fig. 1. (Left) An example three-node line network under a broad attack. The impostor nodes that are part of the target set S are depicted as the
labeled smaller circles and agents in the network are the bigger circles. The color of each circle indicates the node’s action—green for x, blue for y.
For operator gains α ≤ 1

2 , the SSS is (a1, a2, a3) = (x, y, y). From (9), this gives a risk of Rb(α,S;G) = 1− 1
2(1+αsys)

. In other words, it induces

suboptimal efficiency. For α > 1
2 , the network is resilient to this attack because the welfare-minimizing SSS is (x, x, x). This gives optimal efficiency,

i.e., a risk of 0. (Right) An example of a four node star network under a focused attack where a subset F of three nodes are targeted to be fixed
(squares). Only the center node is unfixed. In this example, the maximum welfare is maxa∈AF

W (a) = 4, achieved when the center plays y. This
is because the alternative action (when center plays x) gives the suboptimal welfare 2(1 + αsys) < 4 due to αsys < 1. For operator gains α < 1,
the center node plays y in the SSS. This yields optimal efficiency, i.e., the risk is Rf (α,F ;G) = 0. For α ≥ 1, the center node plays x, giving a

risk of Rf (α,F ;G) = 1− 1+αsys
2 . The methods to calculate stochastically stable states under both types of attacks follow standard potential game

arguments and are detailed in Section V.

Fig. 2. (a) Worst-case risk from broad attacks R∗
b(α) (11) is a piecewise constant function defined over countably infinite half-open intervals. The

graphs and their corresponding target set, which attain each level of worst-case broad risk are illustrated for α < 1. Here, the x, y labels indicate
the type of impostor influence on the agents (circles) in the network, and the color of the circles depict the action played in the welfare-minimizing
SSS (green = x, blue = y). If α ∈ Ik, k = 1, 2, . . .[recall (12)], the worst-case risk occurs on a star graph of k + 2 nodes where all nodes but one
are targeted with a y impostor. The one leaf node has an x impostor attached, giving a single miscoordinating link in the network. (b) Worst-case
risk from focused attacks R∗

f (α) (16). The graphs and their corresponding fixed sets which attain the worst-case focused risks are illustrated for

α = 1
2 , 1, and 2. The nodes’ color represents the worst-case SSS at α (blue = y, green = x). The targeted fixed agents are represented as squares

and the unfixed agents as circles. Here, 1
2 < αsys < 1. The proofs establishing all worst-case graphs are detailed in Section V.

which is the ratio of the welfare induced by the worst-case stable
state to the optimal welfare given the fixed set F . The risk faced
by the system operator in choosing α is defined as

Rf (α, F ;G) := 1− Jf (α, F ;G). (14)

Again, risk measures the distance from optimal efficiency when
choosingα. The fixed nodes here differ from the impostor nodes
in that they contribute to the true measured welfare (3) in addition
to modifying the SSS by restricting the action profile space and
influencing the decisions of their nonfixed neighbors. Fig. 1(b)
provides an illustrative example of a network with three fixed
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agents and one unfixed agent. The extent to which the system is
susceptible to focused attacks is defined by the following worst-
case risk metric.

Definition 2: The worst-case risk from focused attacks is
given by

R∗
f(α) := max

N≥3
max
G∈GN

max
F∈F(G)

R f(α, F ;G). (15)

The quantity R∗
f (α) is the cost metric that a system operator

wishes to reduce given uncertainty on the graph structure and
composition of fixed agents in the network.

Theorem 2: The worst-case risk from focused attacks is

R∗
f(α) =

⎧⎪⎨
⎪⎩
1− 1+α

1+αsys
, if α < αsys

0, if α = αsys

1− 1+αsys

1+α , if α > αsys

. (16)

The technical results needed for the proof are given in Sec-
tion V. An illustration of this quantity as well as the graphs that
induce worst-case risk are portrayed in Fig. 2(b). We observe the
choice α = αsys recovers optimal efficiency for any G ∈ GN

and F ∈ F(G). In other words, by operating at the system
gain αsys, the system operator safeguards efficiency from any
focused attack. Furthermore, R∗

f (α) monotonically increases
for α > αsys, approaching 1 in the limit α → ∞. Intuitively,
the risk in this regime comes from inflating the benefit of
the x convention, which can be harmful to system efficiency
when there are predominantly fixed y nodes in the network. For
α < αsys, R∗

f (α) monotonically decreases. The risk here stems
from devaluing the x convention, which hurts efficiency when
coordinating with fixed x nodes is valuable.

C. Fundamental Tradeoffs Between Risk and Security

We describe the operator’s tradeoffs between the two worst-
case risk metrics. That is, given a level of security γ ∈ [0, 1]
is ensured on one worst-case risk metric through a partic-
ular design choice α, what is the minimum achievable risk
level of the other? These relations are direct consequences of
Theorems 1 and 2.

Remark 1: Before presenting the tradeoff relations, we first
observe that sinceR∗

f(α) is decreasing onα < αsys andR∗
b(α) is

decreasing inα, the operator should not select any gainα < αsys,
as it worsens both risk levels. Hence, for the rest of this article,
we only consider gains greater than αsys.

Corollary 1: Fix γ f ∈ [0, 1). Suppose R∗
f(α) ≤ γ f for some

α. Then,

R∗
b(α) ≥ R∗

b

(
1 + αsys

1− γ f
− 1

)
. (17)

Proof: From (16), R∗
f (α) ≤ γf implies α ≤ 1+αsys

1−γf
− 1.

Since R∗
b(α) is a decreasing function in α, we obtain the

result. �
In words, as the security from worst-case focused attacks

improves (γf lowered), the risk from worst-case broad attacks
increases. A tradeoff relation also holds in the opposite direction.

Corollary 2: Fix γ b ∈ [0, 1]. SupposeR∗
b(α) ≤ γ b for some

α. Suppose αsys ∈ Iksys for some ksys ∈ {1, 2, . . .}. Then,

R∗
f(α)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ 0, if γ b ∈
[
1− ksys

ksys+1
1

1+αsys
, 1
]

>R∗
f

(
k

k+1

)
, if γ b ∈

[
1− k

k+1
1

1+αsys
, 1− k−1

k
1

1+αsys

)
for k = ksys, ksys + 1, . . .

≥ R∗
f(1), if γ b = 1− 1

1+αsys

> R∗
f

(
3
2

)
, if γ b ∈

[
0, 1− 1

1+αsys

)
.

(18)
If αsys ∈ [1, 3/2]

R∗
f(α)

⎧⎨
⎩
≥ 0, if γ b ∈

[
1− 1

1+αsys
, 1
]

> R∗
f

(
3
2

)
, if γ b ∈

[
0, 1− 1

1+αsys

)
.

(19)

If αsys >
3
2 , then R∗

f(α) ≥ 0 for any γ b.
Proof: All bounds are computed by finding infα R∗

f (α) s.t.
R∗

b(α) ≤ γb. The relations ≥ and > follow from the fact that
R∗

f (α) is increasing in α > αsys, and depending on whether R∗
f

can attain the resulting value. �
Here, as the security from worst-case broad attacks improves

(γb lowered), the risk from worst-case focused attacks increases.
Each of the broad risk levels can be attained for a range of
focused risks. An illustration of the attainable worst-case risk
levels is given in Fig. 3 (blue).

IV. RANDOMIZED OPERATOR STRATEGIES

In this section, we consider the scenario where the operator
randomizes over multiple gains. We present a definition and a
characterization of worst-case expected risks. We then identify
the risk-security tradeoffs available in the randomized gain
setting. We observe they significantly improve upon the deter-
ministic gain setting (see Fig. 3). We then identify ways to further
improve these tradeoffs through different randomizations.

A. Worst-Case Expected Risks

Suppose the operator selects a gain from the M distinct
values α = {αk}Mk=1 satisfying α1 < α2 < · · · < αM with the
probability distribution p = [p1, . . . , pM ]� ∈ ΔM . Here, we
denote ΔM = {p ∈ RM

+ :
∑M

j=1 pj = 1} as the set of all M -
dimensional probability vectors. In other words, the operator
employs the payoff gain αj with probability pj .

We consider the following natural definitions of expected
risks. Given a graph G ∈ GN and target set S ∈ T (G), let
Eα,p[Rb|S,G] :=

∑M
j=1 pjRb(αj , S;G) be the expected ad-

versarial risk of the operator’s strategy α,p. The worst-case
expected risk from broad attacks is defined as

E∗
α,p[Rb] := max

N≥3
max
G∈GN

max
S∈T (G)

Eα,p[Rb|S,G]. (20)

Similarly, given a fixed set F ∈ F(G), let Eα,p[Rf |F,G] :=∑M
j=1 piRf (αj , F ;G) be the expected risk from focused at-

tacks. The worst-case expected risk from focused attacks is

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 07,2021 at 18:43:38 UTC from IEEE Xplore.  Restrictions apply. 



1978 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 5, MAY 2021

Fig. 3. Security-risk tradeoffs are depicted by the achievable worst-
case risk levels from deterministic gains (blue) and randomized gains
(red, green, black). The Pareto frontiers for three different random-
ized strategies α1,α2 ∈ R5

+, and α3 ∈ R300
+ , are shown in increas-

ing order of improvement. The strategies α1 and α2 randomize over
the highest three broad risk levels in addition to the lowest two. The
strategy α3 randomizes over the highest 298 broad risk levels and
the lowest two. We chose the values as follows. For k = 1, 2, we set
αk
1 = αsys, αk

j = (1− εk)
j−1
j + εk

j
j+1 ∈ Ij for j = 2, 3, αk

4 = 1+ εk,

and αk
5 = 3

2 + εk. We have set ε1 = 0.5 and ε2 = .01. Hence, Par(α2)
improves upon Par(α1) via Claim 1. For k = 3, we set α3

1 = αsys,
α3
j = (1− ε3)

j−1
j + ε3

j
j+1 ∈ Ij , j = 2, 3, . . . , 298, α3

299 = 1+ ε3, and

α3
5 = 3

2 + ε3. Claim 2 ensures Par(α3) improves upon Par(α2). We
chose ε3 = .01 and αsys = 1/4.

defined as

E∗
α,p[Rf ] := max

N≥3
max
G∈GN

max
F∈F(G)

Eα,p[Rf |F,G]. (21)

Theorem 3: Suppose the operator randomizes with gains
α = {αk}Mk=1 according to p ∈ ΔM . Then, the worst-case ex-
pected broad risk is

E∗
α,p[R b] = max

k=1,...,M

⎧⎨
⎩
⎛
⎝ k∑

j=1

pj

⎞
⎠R∗

b(αk)

⎫⎬
⎭ . (22)

The worst-case expected focused risk is

E∗
α,p[R f] = max

k=1,...,M

⎧⎨
⎩
⎛
⎝ M∑

j=k

pj

⎞
⎠R∗

f(αk)

⎫⎬
⎭ . (23)

The proofs are given in Section VI. The characterization
of worst-case expected risk is a discounted weighting of a
deterministic worst-case risk level. This suggests that the risk
levels achievable by randomization can improve upon the risks
induced from a deterministic gain.

B. Risk Tradeoffs Under Randomized
Operator Strategies

Given a level of security γ ∈ [0, 1] is ensured on one expected
worst-case metric, what is the minimum achievable risk level
on the other? We find this can be calculated through a linear

program. We formalize these tradeoffs in the following two
statements, which are analogous to Corollaries 1 and 2.

Corollary 3: Fix γ f ∈ [R∗
f(α1), 1] and a set of gains α =

{αj}Mj=1. Suppose E∗
α,p[R f] ≤ γ f for some p ∈ ΔM . Then,

E∗
α,p[R b] ≥ v b(γ f,α) (24)

where vb(γ,α) is the value of the following linear program:

vb(γ f,α) = min
p′,v

v

s.t.
M∑
i=1

p′i = 1, pi ≥ 0 ∀i = 1, . . . ,M

v ∈ [0, 1]

A LP

[
p′

v

]
�
[

0M

γ f1M

]
(25)

where � denotes elementwise ≤, 0M and 1M are column M -
vectors of zeros and ones, respectively, and A LP is the 2M ×
(M + 1) matrix

A LP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R∗
b(α1) 0 · · · 0 −1

R∗
b(α2) R∗

b(α2) · · ·
...

...
...

. . . 0
R∗

b(αM ) · · · · · · R∗
b(αM ) −1

R∗
f(α1) · · · · · · R∗

f(α1) 0

0 R∗
f(α2) · · · R∗

f(α2)
...

...
. . .

...
0 · · · 0 R∗

f(αM ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Moreover, vb(γ f,α) is decreasing in γ f.
Proof: We need to show equivalence between the linear

program (25) and the optimization problem

min
p′∈ΔM

E∗
α,p′ [Rb] subject to E∗

α,p′ [Rf ] ≤ γf . (27)

Let Ab(α) ∈ RM×M be the matrix defined by the upper left
block of (26) and Af (α) by the bottom left block. From The-
orem 3, we can express E∗

α,p′ [Rb] as the maximum element of
the M -vector Ab(α)p′, and similarly E∗

α,p′ [Rf ] as the maxi-
mum element of Af (α)p′. Hence, E∗

α,p′ [Rf ] ≤ γf is the linear
constraint [Af (α)p′]i ≤ γ for all i = 1, . . . ,M . The objective
minp′∈ΔM

E∗
α,p′ [Rb] itself can be cast as a linear objective with

linear constraints, i.e., minp′∈ΔM ,v∈[0,1] v s.t. [Ab(α)p′]i ≤ v.
Combining these two, we obtain (25). The claim vb(γ,α)
is decreasing in γ follows as a consequence of the linear
program (25). �

We note that a worst-case expected focused risk E∗
α,p[Rf ] <

R∗
f (α1) is not attainable because α1 is the smallest gain it

mixes with. Hence, the linear program (25) is infeasible for
γf < R∗

f (α1). The following tradeoff relation holds in the op-
posite direction.

Corollary 4: Fix γ b ∈ [R∗
b(αM ), 1] and a set of gains α =

{αj}Mj=1. Suppose E∗
α,p[R b] ≤ γ b for some p ∈ ΔM . Then,

E∗
α,p[R f] ≥ v f(γ b,α) (28)
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where v f(γ b,α) is the value of the following linear program:

v f(γ b,α) = min
p,v

v

s.t.
M∑
i=1

pi = 1, pi ≥ 0 ∀i = 1, . . . ,M

v ∈ [0, 1][
A f(α) −1M

A b(α) 0M

] [
p

v

]
�
[

0M

γ b1M

]
(29)

where A f(α) and A b(α) are defined as the bottom and top-left
blocks of (26), respectively. Furthermore, v f(γ b,α) is decreas-
ing in γ b.

We omit the proof as it is similar to that of Corollary 3. Note
a worst-case expected broad risk E∗

α,p[Rb] < R∗
b(αM ) is not

attainable since αM is the highest gain it mixes with—(29) is
infeasible for γb < R∗

b(αM ). Fig. 3 plots the best achievable risk
levels of three randomized operator strategies (red, green, and
black).

C. Improvement of Risk Tradeoffs

The tradeoff relations describe the best achievable level on
one risk metric given the other is subject to a security constraint
when the gains α are fixed. One way to improve the achievable
risks is to decrease the available gains.

Claim 1: Let α,α′ ∈ RM . Suppose αj ∈ Ikj
[recall (12)],

j = 1, . . . ,M for some nondecreasing subsequence kj ≥ 1.
Let α′ satisfy α′

j ∈ Ikj
with α′

j < αj . Then, for all γ b ∈
[R∗

b(αM ), 1], v f(γ b,α
′) ≤ v f(γ b,α). Similarly, for all γ f ∈

[R∗
f(α1), 1], v b(γ f,α

′) ≤ v b(γ f,α).
Randomizing over additional gains can also improve the

achievable risks.
Claim 2: Suppose α ∈ RM and α′ ∈ RM ′

with M < M ′,
and assume α′ contains the elements of α. Then, the assertion
of Claim 1 holds.

The proofs of the abovementioned two Claims follow directly
from the formulation of the LPs (25), (29), and hence we omit
them.

Fig. 3 depicts the best achievable risk levels of three ran-
domized operator strategies of increasing improvement due to
Claims 1 and 2 (red, green, and black curves). In particular, these
plots constitute the Pareto frontier of all attainable expected
risks among distributions p given a fixed set of gains. That is,

for any α, we say a risk level

[
Eα,p[Rf ]

Eα,p[Rb]

]
∈ R2 belongs to

the frontier Par(α) if there does not exist a p′ �= p such that[
Eα,p′ [Rf ]

Eα,p′ [Rb]

]
�
[

Eα,p[Rf ]

Eα,p[Rb]

]
. Within Par(α), the operator can

only improve upon one worst-case risk metric by sacrificing
performance on the other.

From Corollary 4, the frontier given gainsα is the set of points

Par(α) =

{[
vf (γb,α)

γb

]
∈ R2 : γb ∈ [R∗

b(αM ), R∗
b(α1)]

}
.

(30)
The parameterγb is upper bounded here byR∗

b(α1) since any risk
level with Eα,p[Rb] > R∗

b(α1) is unattainable under α. Hence,
the values vf (γb,α) and vf (R

∗
b(α1),α) are equivalent for γb >

R∗
b(α1). The frontiers in Fig. 3 are generated by numerically

solving the linear program (29) for a finite grid of points γb ∈
[R∗

b(αM ), R∗
b(α1)].

As we have seen, the transition from deterministic to ran-
domized gains ensures a reduction of risk levels. Randomizing
over only a few different gains substantially improves upon the
attainable deterministic worst-case risks. However, a detailed
quantification of such improvements remains a challenge due to
the high dimensionality of the model. In particular, we have yet
identified a “limit” frontier that could be obtained by selecting
gains detailed by Claims 1 and 2.

V. PROOF OF THEOREMS 1 AND 2: DETERMINISTIC

WORST-CASE RISKS

In this section, we develop the technical results that charac-
terize the worst-case risk metrics R∗

b(α) and R∗
f (α) (see Theo-

rems 1 and 2). Before presenting the proofs, we first present some
preliminaries on potential games [25], which are essential to
calculating stochastically stable states. We, then, define relevant
notations for the forthcoming analysis.

A. Potential Games

Graphical coordination games fall under the class of potential
games–games where individual utilities {Ui}i∈N are aligned
with a global objective, or potential function. A game is a
potential game if there exists a potential function φ : A → R,
which satisfies

φ(ai, a−i)− φ(a′i, a−i) = Ui(ai, a−i)− Ui(a
′
i, a−i) (31)

for all i ∈ N ,a ∈ A, anda′i �= ai [25]. In potential games, the set
of stochastically stable states (6) are precisely the action profiles
that maximize the potential function [16], [17]. Specifically,
LLL(A, {Ui}i∈N ;G) = arg maxa∈Aφ(a). Our analysis relies
on characterizing a potential function for the graphical coordina-
tion game in the presence of adversarial influences. This allows
us to compute stochastically stable states in a straightforward
manner.

B. Relevant Notations for Analysis

Any action profile a on a graph G = (N , E) ∈ GN decom-
poses N into x and y-partitions. A node that belongs to a y-
partition (x-partition) has ai = y (x). The partitions are enumer-
ated {P1

y , . . . ,P
ky
y } and {P1

x, . . . ,Pkx
x }, are mutually disjoint,

and cover the graph. Each partition is a connected subgraph of
G. It is possible that kx = 0 with ky = 1 (when a = �y), kx = 1
with ky = 0 (when a = �x), or ky, kx ≥ 1.
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For any subset of nodes A,B ⊆ N , let us denote

e(A,B) := {(i, j) ∈ E : i ∈ A, j ∈ B} (32)

as the set of edges between A and B. We write Ac as the
complement of A. We extensively use the notation

Wα(E, a) :=
∑

(i,j)∈E
V α(ai, aj) (33)

as the welfare due to edge set E ⊆ E in action profile a, where
V α is of the form (1) with αsys replaced by α. For compactness,
we will denote W (E, a) as Wαsys(E, a) for the local system
welfare generated by the edges E. Our analysis will also rely on
the following mediant inequality.

Fact 1: Suppose ni ≥ 0 and di > 0 for each i = 1, . . . ,m ∈
N. Then, ∑m

i=1 ni∑n
i=1 di

≥ min
i

ni

di
. (34)

We refer to the LHS abovementioned as the mediant sum of the
ni

di
.

C. Characterization of R∗
b: Worst-Case Broad Risk

To prove Theorem 1, we seek a pair (S,G) with G ∈ GN

of any size N ≥ 3 and S ∈ T (G), that minimizes efficiency
Jb(α, S;G) (maximizes risk Rb(α, S;G)). Our method to find
the minimizer is to show any (S,G) can be transformed into a
star network with a particular target set that has lower efficiency,
when α < 1. Thus, in this regime the search for the worst-case
graph reduces to the class of star networks of arbitrary size.
For α ≥ 1, structural properties allow us to deduce the minimal
efficiency.

The graphical coordination game defined by A = {x, y}N ,
perceived utilities {Ũα

i }i∈N (7), target set S, and graph G falls
under the class of potential games [25]. A potential function is
given by

1

2
Wα(a) + (1 + α)

∑
i∈Sx

1(ai = x) +
∑
i∈Sy

1(ai = y) (35)

where

Wα(a) :=
∑
i∈N

Uα
i (a). (36)

Hence, the stochastically stable states LLL(A, α, S;G) are max-
imizers of (35). Suppose â = arg mina∈LLL(A,α,S;G)W (a) is

the welfare-minimizing SSS inducing the partitions {Pk
z }kz

k=1,
z = x, y. We can express its efficiency from (8) as

∑ky

k=1 |e(Pk
y ,Pk

y )|+ (1 + αsys)
∑kx

k=1 |e(Pk
x ,Pk

x )|
(1 + αsys)(

∑ky

k=1 |e(Pk
y ,N )|+

∑kx

k=1 |e(Pk
x ,Pk

x )|)
. (37)

Note the denominator is simply the number of edges in G
multiplied by 1+αsys. From (35), each y-partition Pk

y in â

satisfies1

|Pk
y |+ |e(Pk

y ,Pk
y )| ≥ max

aPk
y
�=�yPk

y

Wα(e(Pk
y ,N ), (aPk

y
, â−Pk

y
))

+
∑
i∈Pk

y

1(ai = y). (CY)

In words, no subset of agents in Pk
y can deviate from y to im-

prove the collective perceived welfare of Pk
y . A similar stability

condition holds for each x-partition Pk
x

(1 + α)
(
|Pk

x |+|e(Pk
x ,Pk

x )|
)

≥ max
aPk

x
�=�xPk

x

Wα(e(P k
x ,N ), (aPk

x
, â−Pk

x
))

+ (1 + α)
∑
i∈Pk

x

1(ai = x). (CX)

The following result characterizes the threshold on α above
which any network is safeguarded from any impostor attack.

Lemma 1: Let N ≥ 3. Then, α > N
N−1 if and only if

min
G∈GN

min
S∈T (G)

J b(α, S;G) = 1. (38)

Proof: (⇒)Letα > N
N−1 . Suppose there is a pair (S,G)with

Jb(α,G, S) < 1. Then there must exist a y-partition Py ⊂ N .
From (CY)

|Py|+ |e(Py,Py)| ≥ (1 + α)|e(Py,N )| > 2|e(Py,N )|.
(39)

Since G is connected, |e(Py,Py)| ≥ |Py| − 1 and there is at
least one outgoing link from Py , i.e., |e(Py,Pc

y)| ≥ 1. Conse-
quently, |e(Py,N )| ≥ |Py|, from which we obtain

|e(Py,N )|+ |e(Py,Py)| > 2|e(Py,N )| (40)

which is impossible.
(⇐) Assume minG∈GN

minS∈T (G) Jb(α, S;G) = 1. Then,
no y-partition can exist for any graph. In particular, (CY) is
violated for Py = N

N + |E| < (1 + α)|E| ⇒ α >
N

|E| . (41)

Since |E| ≥ N − 1, we obtain α > N
N−1 . �

We also deduce the following minimal efficiencies for any
graph when 1 ≤ α ≤ N

N−1 .
Lemma 2: Suppose N ≥ 3. Then, α ∈ [1, N

N−1 ] if and only
if

min
G∈GN

min
S∈T (G)

J b(α, S;G) =
1

1 + αsys
. (42)

Proof: The (⇒) direction follows the same argument as
Lemma 1.

1Since we are seeking worst-case pairs (S,G), we may consider any y-
partition as only having y impostors placed among its nodes. This is because
any x impostors that were placed in a resulting y-partition can be replaced by
y-impostors and retain stability. We reflect this generalization in (CY) and (CX),
where influence from only y (x) impostors is considered.
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(⇐) The assumption implies the only y-partition that is sta-
bilizable is N . Then, for any Py ⊂ N , (CY) is violated, i.e.,

|Py|+ |e(Py,Py)| < (1 + α)|e(Py,N )|. (43)

Since G is connected and there is at least one outgoing edge
from Py , we obtain

2|Py| − 1

|E| < 1 + α. (44)

The abovementioned equation holds for any graph G = (N , E)
and subset of nodes Py ⊂ N . From the facts that |Py| ≤ N − 1
and |E| ≥ N − 1, we have α > N−2

N−1 for any N ≥ 3. Conse-
quently, α ≥ 1 and Lemma 1 establishes that α ≤ N

N−1 . �
The class of star graphs is central to the worst-case analysis

in the interval 0 < α < 1.
Definition 3: Let SN be the set of all (S,G) where G is

the star graph with N nodes, Sy contains the center node, and
Sx = N\Sy .

An immediate consequence of this definition is the leaf nodes
Sx satisfy (CX). The efficiency is, then, proportional to the
fraction of leaf nodes that are stable to y, if any. Furthermore,
the stability condition (CY) of Py = Sy for members of SN

simplifies to

2|e(Py,Py)|+ 1 ≥ (1 + α)(N − 1). (45)

In other words, stability of the target setSy as ay-partition hinges
on (CY) being satisfied for the selection aPy

= �x. The following
result reduces the search space for efficiency minimizers to SN

when α < 1.
Lemma 3: Suppose 0 < α < 1 and n ≥ 3. Consider any

(S,G)withG ∈ GN ,S ∈ T (G). Then, there is a (S ′, G′) ∈ SN ′

such that J b(α, S
′;G′) ≤ J b(α, S;G) for some N ′ ≥ N .

The idea of the proof is to construct a member of SN ′ by
recasting the y andx-partitions of (S,G) as star subgraphs while
preserving the same number and type of edges, thus preserving
efficiency. Further efficiency reduction can be achieved by con-
verting excess x links into y links in this star configuration.
We provide the proof detailing the constructive procedure in the
Appendix. We now characterize the minimal efficiency for the
star graph of size N , J∗

N (α) := min(G,S)∈SN
Jb(α, S;G) for

α < 1.
Lemma 4: Suppose α < 1 and fix N ≥ 3. Then,

J∗
N (α) =

1

(1 + αsys)(N − 1)

⌈
(1 + α)(N − 1)− 1

2

⌉
. (46)

Proof: The goal is to find the smallest y-partition of the n
star that is still stabilizable under a gain α. This is written

J∗
N (α) = min

Ny

1

1 + αsys

Ny

N − 1

s.t.

{
Ny ≤ N − 1, (size of y-partition)

2Ny + 1 ≥ (1+α)(N−1), (stability).
(47)

The smallest integer Ny that satisfies the constraints is⌈
(1+α)(N−1)−1

2

⌉
for α ∈ (0, 1).

�

Proof of Theorem 1: Forα < 1, by Lemma 3, the worst-case
efficiency is

min
N≥3

min
(G,S)∈SN

Jb(α, S;G) = min
N≥3

J∗
N (α). (48)

Using the formula of Lemma 4, we obtain the first entry in (11).
Lemma 2 asserts the minimal efficiency is 1

1+αsys
for α ∈ [1, 3

2 ]

because the upper bound N
N−1 is maximized at N = 3 (for N ≥

3). This gives the second entry in (11). Finally, Lemma 1 asserts
the minimal efficiency is 1 for α > 3

2 . �

D. Characterization of R∗
f: Worst-Case Focused Risk

Our approach for the proof of Theorem 2 differs from that
of R∗

b. Instead of reducing the search of worst-case graphs, we
simply provide an upper bound on R∗

f (α, F ;G) for any G and
fixed set F ∈ F(G), and show one can construct a graph with
fixed nodes that achieves it..

We observe 1
2W

α(a) : AF → R serves as a potential func-
tion [recall (36)] for the game with restricted action set AF

and utilities {Uα
i }i∈N . Hence, the stochastically stable states

LLL(AF , α;G) are maximizers of 1
2W

α(a). Suppose â =
arg mina∈LLL(AF ,α;G)W (a) decomposes the graph into the x

and y-partitions {Pk
z }kz

k=1, z = x, y. We express its efficiency
(13) as∑ky

k=1 |e(Pk
y ,Pk

y )|+ (1 + αsys)
∑kx

k=1 |e(Pk
x ,Pk

x )|∑ky

k=1 W
αsys(e(Pk

y ,N ), a∗) +
∑kx

k=1 W
αsys(e(Pk

x ,Pk
x ), a

∗)
(49)

where a∗ = arg maxa∈AF
W (a) is the welfare-maximizing ac-

tion profile. Similar to (CY), each y-partition Pk
y formed from

â satisfies the stability condition

|e(Pk
y ,Pk

y )| ≥ max
aPk

y
�=�y

Wα(e(Pk
y ,N ), (aPk

y
, â−Pk

y
)). (CYE)

To reduce cumbersome notation, it is understood the max is taken
over actions of unfixed nodes, aPk

y \F . Likewise, each x-partition

Pk
x satisfies

(1 + α)|e(Pk
x ,Pk

x )| ≥ max
aPk

x
�=�x

Wα(e(Pk
x ,N ), (aPk

x
, â−Pk

x
)).

(CXE)
The following lemma asserts that agents playing y in the SSS

under the gain α remain playing y under a lower gain α′ < α.
The result is crucial for establishing a lower bound on efficiency
for any graph G with arbitrary fixed set F ∈ F(G).

Lemma 5: Suppose α′ < α. Denote â′ =
arg mina∈LLL(AF ,α′;G)W (a) as the welfare-minimizing SSS
under α′. Then, for any y-partition Py induced from α, â′i = y
for all i ∈ Py\F .

Proof: Condition (CYE) asserts for all aPy
�= �y that

Wα(e(Py,N ), (�yPy
, â−Py

)) ≥ Wα(e(Py,N ), (aPy
, âPy

)).
(50)

It also holds for all aPy
�= �y and for any a−Py

�= â−Py
that

Wα(e(Py,N ), (�yPy
, a−Py

)) ≥ Wα(e(Py,N ), (aPy
, a−Py

))
(51)

because any y-links garnered in the RHS abovementioned by
changing â−Py

to a−Py
also contribute to the LHS. In particular,
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the abovementioned equation holds for a−Py
= â′−Py

. Lowering
the gain to α′ preserves the abovementioned inequality as well,
as it devalues x-links garnered on the RHS. �

A dual statement holds—agents playing x in the SSS under
α remain so under a higher gain α′ > α.

Lemma 6: Suppose α′ > α. Then, for any x-partition Px

induced from α, â′i = x for all i ∈ Px\F .
We omit the proof for brevity, as it is analogous to the proof

of Lemma 5. We are now ready to prove Theorem 2.
Proof of Theorem 2: Consider any graph G ∈ GN with fixed

set F . Recall that efficiency is one for α = αsys. Thus, we first
consider α < αsys. Observe that

|e(Pk
y ,Pk

y )| ≥ Wα(e(Py,N ), (a∗Py
, â−Py

))

= Wα(e(Py,N ), (a∗Py
, a∗−Py

))
(52)

where the inequality is due to (CYE). The equality results from
Lemma 6—the agents (/∈ Py) that neighbor any member of Py

remain playing x in a∗. We, then, obtain

|e(Pk
y ,Pk

y )|
W (e(Pk

y ,N ), a∗)
≥ 1 + α

1 + αsys
. (53)

The inequality results since the expressions of the numerator
and denominator garner the same edges for welfare. It occurs
with equality if and only if a∗i = x ∀i ∈ Pk

y \F . Applying the
mediant inequality (34) to (49), Jf (α, F ;G) ≥ 1+α

1+αsys
. The case

when α > αsys follows analogous arguments. From Lemma 5,
|e(Pk

y ,Pk
y )| = Wα(e(Pk

y ,Pk
y ), a

∗). For x-partitions

(1 + αsys)|e(Pk
x ,Pk

x )|
W (e(Pk

x ,N ), a∗)
≥ 1 + αsys

1 + α

Wα(e(Pk
x ,N ), a∗)

W (e(Pk
x ,N ), a∗)

≥ 1 + αsys

1 + α

(54)

where the first inequality is from (CXE) and the second oc-
curs with equality if a∗i = y ∀i ∈ Pk

x\F . From (34) and (49),
Jf (α, F ;G) ≥ 1+αsys

1+α . �
We have just shown fundamental lower bounds on efficiency

for any graph with fixed agents. The bounds are tight as they can
be achieved for any gainα by arrangingNx fixed x andNy fixed
y leaf nodes that influence a single unfixed agent in the center of a
star graph. If α < αsys, choosing Nx

Ny
= 1

1+α gives the minimal

efficiency 1+α
1+αsys

. If α > αsys, choosing Nx

Ny
= 1

1+α gives the

minimal efficiency 1+αsys

1+α . Note that if α is rational, one could
choose finite integers Ny, Nx that achieve such ratios. Recall
Fig. 2(b) for illustrative examples. However, if it is irrational,
they must be taken arbitrarily large to better approximate the
ratio.

VI. PROOF OF THEOREM 3: WORST-CASE RISKS UNDER

RANDOMIZED OPERATOR DESIGNS

Recall a randomized strategy consists of gains α = {αi}Mi=1

with distribution p ∈ ΔM . The gains are ordered αsys ≤ α1 <
· · · < αM . To prove Theorem 3, we outline a few technical
Lemmas. The key insight is the expected efficiency of any graph
G can be expressed in the form

∑M
i=1 pisi, where the coefficient

si is a mediant sum over local efficiencies of partitions inGwhen
gain αi is used. The following two mathematical facts are the
basis of this insight.

Fact 2: Let νi <
ni

di
≤ 1 with ri ≥ 0 and ni, di > 0 for all

i = 1, . . . ,M . Then, for all p ∈ ΔM

M∑
i=1

pisi ≥ 1 + min
i=1,...,M

⎧⎨
⎩
⎛
⎝ i∑

j=1

pj

⎞
⎠ (νi − 1)

⎫⎬
⎭ (55)

where si :=
∑i−1

j=1 dj+
∑M

j=i nj
∑M

j=1 dj
, i = 1, . . . ,M .

We provide a proof in the Appendix. The following dual result
follows directly.

Fact 3: For all p ∈ ΔM

M∑
i=1

pis
′
i ≥ 1 + min

i=1,...,M

⎧⎨
⎩
⎛
⎝ M∑

j=i

pj

⎞
⎠ (νi − 1)

⎫⎬
⎭ (56)

where s′i :=
∑i

j=1 nj+
∑M

j=i dj
∑M

j=1 dj
, i = 1, . . . ,M .

Proof: The proof follows similarly to Fact 2, where the
indices of the si coefficients are reversed. �

We will show for any (S,G) that Eα,p[Jb|S,G] = 1−
Eα,p[Rb|S,G] can be expressed in the form

∑M
i=1 pisi from the

LHS of (55). The lower bounds establish worst-case expected
efficiencies—and, hence risks. The νi correspond to the worst-
case deterministic efficiencies J∗

b (αi) = 1−R∗
b(αi) of the M

gains and ni

di
to local efficiencies of selected partitions in the

graph. Fact 2 will be used to establish (22), and Fact 3 for (23)
(see Theorem 3). We now identify a structural property required
of worst-case graphs.

Lemma 7: A worst-case graph, i.e., a member of
arg minG∈GN ,S∈T (G)Eα,p[J b|S,G], has no active x-links
in α1.

Proof: Any active x-links in α1 remain so for all {αi}Mi=2.
The efficiency corresponding to each gain can be reduced in
the following manner. Delete all such x-links and associated
agents. For each miscoordinating link between an x and y
agent that existed, replace with a single link to a newly created
isolated agent with an x-impostor attached. This preserves the
stochastically stable states of all other nodes while reducing
efficiency in each gain. �

Intuitively, a graph that has coordinating x nodes in each gain
α1, . . . , αM can be modified by removing these links, resulting
in a lower efficiency. We are now ready to prove (22) (see
Theorem 3).

Proof of (22) (see Theorem 3): Consider any graph G =
(N , E) ∈ GN and S ∈ T (G). Let us denote the M (worst-case)
stochastically stable states that correspond to each gain αi with
âi. Define for each k = 1, . . . ,M

P k = {n ∈ N : âin = y ∀i ≤ k, âin = x ∀i > k} (57)

as the set of nodes that play y in the SSS in α1, . . . , αk and
play x in αk+1, . . . , αM . Note that P k is possibly composed
of multiple y-partitions. Also note it is possible that P k = ∅

for all k > m̄ for some m̄ ∈ {2, . . . ,M − 1}, i.e., âi = �x for
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all i > m̄. We first consider the case when P k �= ∅ for every
k = 1, . . . ,M .

Let Qk := {n ∈ N : âkn = y} =
⋃M

i=k P
i. Denote P x :=

{n ∈ N : â1n = x} = (Q1)c as the set of nodes stable tox for all
αi. Consider the gain αi with i ≤ k. Then, the local efficiency

W (e(Pk,N ),âk)

W (e(Pk,N ),(a∗
Pk ,â

k

−Pk ))
of P k is

|e(P k, Qk+1)|+ |e(P k, P k)|
(1 + αsys)(|e(P k, P k)|+ |e(P k, P x)|+ |e(P k, (Qk)c)|)

> J∗
A(αi). (58)

The inequality is due to Proposition 1. For gains αi with i > k,
the local efficiency of P k is

(1+αsys)(|e(P k, P k)|+|e(P k, P x)|+|e(P k, (Qk)c)|)
(1+αsys)(|e(P k, P k)|+|e(P k, P x)|+|e(P k, (Qk)c)|) = 1.

(59)
Hence, the overall system efficiency under gainαi is the mediant
sum of the local efficiencies of the P k. An application of
Fact 2 gives the result. The case when P k = ∅ for k > m̄ ∈
{2, . . . ,M − 1} also follows directly from Fact 2. From the
notation of Fact 2, nk

dk
= 1 for k > m̄. �

The details for the proof of (22) (see Theorem 3) follow
analogous arguments pertaining to focused attacks. Recall for
a graph G ∈ Gn and restricted action set A, we denote F =
Fx ∪ Fy ⊂ N as its set of fixed nodes. Additionally, we restrict
attention to gains αi ≥ αsys, as these are not strictly dominated
in the risk curve. The following structural property holds in a
worst-case graph for focused risk.

Lemma 8: A worst-case graph, i.e., a member of
arg minG∈GN ,F∈F(G)Eα,p[J f|F,G], has no active y-links
in αM . Additionally, a∗F c = �y.

Proof: A graph that has active y-links in αM remain active
for all α1, . . . , αM−1. The efficiency corresponding to each
gain can be reduced by removing all such links and keeping
the border nodes as fixed y agents. This preserves the stability
properties of all other nodes. The claim a∗F c = �y follows from
Lemma 5. �

We are now ready to prove (23) in Theorem 3.
Proof of (23) (see Theorem 3): Consider any graph G =

(N , E) ∈ GN and fixed nodes F ∈ F(G). The M stochastically
stable states that correspond to each gain αi are denoted âi.
Define for each k = 1, . . . ,M

P k = {n ∈ F c : âin = x ∀i ≥ k, âin = y ∀i < k} (60)

as the set of unfixed nodes that play x in the SSS forαk, . . . , αM

and play y in α1, . . . , αk−1. Note that it is possible P k = ∅ for
all k < m̄ for some m̄ ∈ {2, . . . ,M − 1}. That is, akF c = �y for
k = 1, . . . , m̄− 1. We first consider the case when P k �= ∅ for
every k = 1, . . . ,M .

Let Qk = {n ∈ F c : âkn = y} =
⋃M

i=k P
i. Consider the gain

αi with i ≥ k. Then, the local efficiency W (e(Pk,N ),âk)

W (e(Pk,N ),(a∗
Pk ,â

k

−Pk ))

of P k is

(1 + αsys)(|e(P k, P k)|+ |e(P k, (Qk−1)c)|+ |e(P k, Fx)|)
|e(P k, P k)|+ |e(P k, Qk)|+ |e(P k, Fy)|

> J∗
f (αi). (61)

Here, we use the convention |e(P 1, (Q0)c)| = 0. For gains αi

with i < k, the local efficiency of P k is

|e(P k, P k)|+ |e(P k, Qk)|+ |e(P k, Fy)|
|e(P k, P k)|+ |e(P k, Qk)|+ |e(P k, Fy)|

= 1. (62)

Hence, the overall system efficiency underαi is the mediant sum
of the local efficiencies of the P k. An application of Fact 3 gives
the result. The case whenP k = ∅ fork > m̄ ∈ {2, . . . ,M − 1}
also follows directly from Fact 3. �

VII. SUMMARY

In this article, we framed graphical coordination games as a
distributed system subject to two types of adversarial influences.
The focus of our article concerned the performance of a class of
distributed algorithms against the associated worst-case risks.
We identified fundamental tradeoffs between ensuring security
against one type of risk and vulnerability to the other, and vice
versa. Furthermore, our analysis shows randomized algorithmic
designs significantly improves the available tradeoffs. This arti-
cle highlights the design challenges a system operator faces in
maintaining the efficiency of networked, distributed systems.

APPENDIX

Proof of Lemma 3: This proof outlines a procedure to trans-
form any (S,G) into a star graph with lower efficiency if
α < 1. We split into two cases—either (S,G) induces a single
y-partition or more than one. First, assume (S,G) induces a
single y-partition Py . An illustration of the constructive process
is shown in Fig. 4.

Construct a star subgraph Γy that has 1 + |e(Py,Py)| nodes,
each having a y impostor attached. Call the center node iy .
Construct similar star configurationsΓk

x for each x-partitionPk
x .

Call their center nodes ikx. Connect Γy to each Γk
x with a link

between ikx and iy . If there are multiple edges betweenPk
x andPy

(|e(Pk
x , (Pk

x )
c)| ≥ 2), create |e(Pk

x , (Pk
x )

c)| − 1 new isolated
nodes with a single x impostor attached, and connect each to
iy with a single link. At this point, Γy and Γk

x are stable y and
x-partitions, and the isolated nodes are stable playingx. We have
obtained a graph of N ′ ≥ N nodes with identical efficiency to
(S,G) since the number and type of edges are preserved.

We can further reduce efficiency if there are active x links,
i.e., if |e(Γk

x,Γ
k
x)| ≥ 1 for at least one Γk

x. If there are none, then
the graph belongs to SN ′ and we are done. Otherwise for each
leaf node j ∈ Pk

x , redirect the edge (j, ikx) to (j, iy), and replace
j’s x impostor with a y impostor. Call mx the total number of
such converted nodes. The resulting graph-target pair (S ′, G′)
belongs to SN ′ . We claim the resulting (larger) y-partition Γ′

y is
stable. For this claim to hold, (45) requires that

2|e(Py,Py)|+ 2mx + 1 ≥ (1 + α)(|e(Py,N )|+mx). (63)
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Fig. 4. Illustration of the constructive process (proof of Lemma 3) that generates a member (S′,G′) ∈ Sm from any graph (S,G) with one
y-partition, and α < 1. Here, the labels on each node indicate the type of impostor influence. Green (blue) nodes play x (y) in the SSS. (Left) Start
with an arbitrary graph-adversary pair (S,G). (Center) The partitions of (S,G) are recast as star subgraphs with the same number of edges. When
there is more than one edge between the y and an x-partition, new nodes are created for the excess outgoing edges. This recasting preserves the
original efficiency Jb(α,S;G). (Right) The active x-links are converted into y-links by redirecting them to the center of the y-partition. This results
in a graph (S′,G′) ∈ Sm.

From the original Py , it holds that

|e(Py,Py)|+ |Py| ≥ (1 + α)|e(Py,N )|
⇒ 2|e(Py,Py)|+ 2mx + 1 > (1 + α)(|e(Py,N )|+mx)

(64)
due to |Py| ≤ 1 + |e(Py,Py)| and α < 1. All x-partitions in
(S ′, G′), now just a collection of single nodes connected to iy
with an x-impostor, are stable. The efficiency is less than the
original because active x-links increase efficiency more than
active y-links do. Hence

Jb(α, S;G) > Jb(α, S
′;G′). (65)

Now, we consider the remaining case when (S,G) induces
ky > 1 y-partitions {Pk

y }
ky

k=1 and kx ≥ 1x-partitions {Pk
x}kx

k=1.

Consider ky such star subgraphs {Γk
y}

ky

k=1 with center nodes

iky . Recast the x-partitions into similar star subgraphs {Γk
x}kx

k=1

with center nodes ikx. We first connect each Γk
x to some Γj

y with
a single link (ikx, i

j
y) in any manner as long as a link between

the original Pk
x and Pj

y exists. For each excess outgoing edge,
we create an isolated node with an x-impostor attached. Each
isolated node is attached to a corresponding iky such that the
original number of outgoing edges for each Pk

y is satisfied. At
this point, there are k′ ≤ ky connected components Gk in the
construction, and the efficiency of this construction is identical to
the original. Finally, we apply the efficiency reduction procedure
from before for each Gk to obtain (S ′

k, G
′
k) ∈ Smk

. From (37)
and (34) we have

Jb(α, S;G) >

∑k′

k=1 |e(Γk
y ,Γ

k
y)|

(1 + αsys)
∑k′

k=1 |e(Γk
y ,N )|

≥ min
k=1,...,k′

Jb(α, S
′
k;G

′
k). (66)

�
Proof of Lemma 2. Technical result for expected risks: Let

us define f(p) :=
∑M

i=1 pisi and fi(p) := (
∑k

j=1 pj)(νk −
1) + 1. The set of probability vectors such that k =

arg mini=1,...,Mfi(p) can be written as the set

Vk := {p ∈ ΔM : fk(p) ≤ f�(p) ∀	 �= k}

=
⋂
� �=k

{
p ∈ ΔM :

∑k
j=1 pj∑�
j=1 pj

≥ 1− ν�
1− νk

}
.

(67)

Define λk =
∑k

j=1 dj
∑k+1

j=1 dj
for each k = 1, . . . ,M − 1. With some

algebra, we can express each si as

si =

⎡
⎣M−i+1∑

j=1

nj

dj
(1−λj−1)

⎛
⎝M−1∏

k=j

λk

⎞
⎠
⎤
⎦+

⎛
⎝1−

M−1∏
j=M−i+1

λj

⎞
⎠ .

(68)
Using the identities

∑M
k=1(1−λk−1)(

∏M−1
j=k λj) = 1 and∑�

k=1(1−λk−1)(
∏M−1

j=k λj) =
∏M−1

j=� λj for 	=1, . . . ,M −
1, we obtain (omitting the algebraic steps)

f(p) =

M∑
i=1

(1−λi−1)

⎛
⎝M−1∏

j=i

λj

⎞
⎠
⎡
⎣(ni

di
− 1

)⎛⎝M−i+1∑
j=1

pj

⎞
⎠+1

⎤
⎦.

(69)
Now, suppose p ∈ Vk for k ∈ {1, . . . ,M}. Using (67) and νi ≤
ni/di ≤ 1, we then have

f(p) ≥
M∑
i=1

λi−1

⎛
⎝M−1∏

j=i

λj

⎞
⎠ fk(p) = fk(p). (70)

�
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