CMOS Devices: Basic Operation, Sub-micron Effects, Parasitic Effects, Emerging Structures

Prof. Kaustav Banerjee
Electrical and Computer Engineering
E-mail: kaustav@ece.ucsb.edu
MOS Transistor

- Important transistor physical characteristics
 - Channel length L
 - Channel width W
MOS Transistor Operation

- Simple case: $V_D = V_S = V_B = 0$
 - Operates as MOS capacitor
- When $V_{GS} < V_{T0}$ (but positive), depletion region forms
 - No carriers in channel to connect S and D
- V_{T0} is known as the **threshold voltage**

![Diagram of MOS transistor with labels for V_{gs}, V_{ds}, V_b, depletion region, source, drain, and P-substrate]
MOS Transistor Operation

- When $V_{GS} > V_{T0}$, inversion layer forms
- Source and drain connected by conducting n-type layer (for NMOS)

![Diagram of MOS Transistor Operation](image-url)
Physical Parameters that Affect V_{T0}

- **Threshold voltage** (V_{T0}): voltage between gate and source required for inversion
 - NMOS Transistor is “off” when $V_{GS} < V_{T0}$
- **Components:**
 - Work function difference between gate and channel (Flat-band voltage)
 - Gate voltage to change surface potential
 - Gate voltage to offset depletion region charge
 - Gate voltage to offset fixed charges in gate oxide and in silicon-oxide interface
Threshold voltage, summary

- If $V_{SB} = 0$ (no substrate bias):

\[V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}} \]

- If $V_{SB} \neq 0$ (non-zero substrate bias)

\[V_T = V_{T0} + \gamma \left(\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{2\phi_F} \right) \]

- Body effect (substrate-bias) coefficient:

\[\gamma = \frac{\sqrt{2qN_A \varepsilon_{Si}}}{C_{ox}} \quad + \text{ for NMOS} \]
\[\quad - \text{ for PMOS} \]

- Threshold voltage increases as V_{SB} increases!
Threshold Voltage (NMOS vs. PMOS)

<table>
<thead>
<tr>
<th></th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Fermi potential</td>
<td>$\phi_F < 0$</td>
<td>$\phi_F > 0$</td>
</tr>
<tr>
<td>Depletion charge density</td>
<td>$Q_B < 0$</td>
<td>$Q_B > 0$</td>
</tr>
<tr>
<td>Substrate bias coefficient</td>
<td>$\gamma > 0$</td>
<td>$\gamma < 0$</td>
</tr>
<tr>
<td>Substrate bias voltage</td>
<td>$V_{SB} > 0$</td>
<td>$V_{SB} < 0$</td>
</tr>
<tr>
<td>Threshold voltage (enhancement devices)</td>
<td>$V_{T0} > 0$</td>
<td>$V_{T0} < 0$</td>
</tr>
</tbody>
</table>
Threshold voltage adjustment

- Threshold voltage can be changed by doping the channel region with donor or acceptor ions

- For NMOS:
 - V_T increased by adding acceptor ions (p-type)
 - V_T decreased by adding donor ions (n-type)
 - Opposite for PMOS

- Approximate change in V_{T0}:
 - Density of implanted ions = N_I [cm$^{-2}$]
 - Assume all implanted impurities are ionized

$$
\Delta V_{T0} = \frac{qN_I}{C_{ox}}
$$
Example: V_{T0} Adjustment

- Consider an NMOS device:
 - P-type substrate: $N_A = 2 \times 10^{16}$ cm$^{-3}$
 - Polysilicon gate: $\Phi_{GC} = -0.92$V
 - $t_{ox} = 600$ Å ($1\text{Å} = 1 \times 10^{-8}$ cm)
 - $N_{ox} = 2 \times 10^{10}$ cm$^{-2}$
 - $\varepsilon_{Si} = 11.7 \varepsilon_0$, $\varepsilon_{ox} = 3.97 \varepsilon_0$

- (a) Find V_{T0}

- (b) Find amount and type of channel implant to get $V_{T0} = 0.4$ V
The Body Effect

\[V_T (V) \text{ vs. } V_{BS} (V) \]

Graph showing the relationship between \(V_T (V) \) and \(V_{BS} (V) \).
Transistor Currents (NMOS)

Cutoff Region: \(I_{ds} = 0, \ V_{gs} < V_t \)

\[I_{ds} = \frac{Q_{channel}}{\text{carrier velocity}(v)} \]

Linear Region: \(V_{gs} > V_t, \ V_{ds} < V_{gs} - V_t \)

\[I_{ds} = \mu \ C_{ox} \ W/L \ (V_{gs} - V_t - V_{ds}/2)V_{ds} \]

Saturation Region: \(V_{gs} > V_t, \ V_{ds} > V_{gs} - V_t \)

\[I_{ds} = \beta/2 \ (V_{gs} - V_t)^2 \]

Note: for PMOS \(V_{tp} \neq V_{tn} \)

\(\mu_p < \mu_n, \text{ hence } (W/L)_{PMOS} \sim 2 (W/L)_{NMOS} \)
NMOS Characteristics

FIG 2.7 I-V characteristics of ideal nMOS transistor

Lecture 8, ECE 225

Kaustav Banerjee
PMOS Characteristics

FIG 2.8 I-V characteristics of ideal pMOS transistor
Channel Length Modulation

- In saturation, pinch-off point moves
 - As V_{DS} is increased, pinch-off point moves closer to source
 - Effective channel length becomes shorter
 - Current increases due to shorter channel

\[
L' = L - \Delta L
\]

\[
I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TN} \right)^2 \left(1 + \lambda V_{DS} \right)
\]

$\lambda = \text{channel length modulation coefficient}$
Summary: MOS I/V

I/V curve for NMOS device:

\[V_{DS} = V_{GS} - V_T \]

- Linear
- Saturation

With channel-length modulation

Without channel-length modulation \((\lambda = 0)\)
Current-Voltage Relations
Short-Channel Transistors

Early Saturation

Linear Relationship

Lecture 8, ECE 225
Kaustav Banerjee
Velocity Saturation

\[\nu_n (\text{m/s}) \]

\[\xi_c = 1.5 \]

\[\xi (\text{V/\mu m}) \]

\[\nu_{sat} = 10^5 \]

Constant mobility (slope = \(\mu \))

Constant velocity
Perspective

Long-channel device

Short-channel device

\[V_{GS} = V_{DD} \]

\[V_{DSAT} \quad V_{GS} - V_T \quad V_{DS} \]
I_D versus V_{GS}

Long Channel
- Quadratic relationship

Short Channel
- Linear relationship
- Quadratic relationship
I_D versus V_{DS}

Resistive Saturation

$V_{DS} = V_{GS} - V_T$

Long Channel

Short Channel
Simple Model versus SPICE

\[V_{DSAT} = L \frac{V_{sat}}{\mu_n} \]

- \(V_{DS} = V_{DSAT} \)
- Linear
- Saturated
- \(V_{DS} = V_{GT} \)
- \(V_{DSAT} = V_{GT} \)

Spice

Lecture 8, ECE 225
Kaustav Banerjee
A PMOS Transistor (short-channel)

Assume all variables negative!
Dynamic Behavior of MOS Transistor

- Oxide Capacitance
 - Gate to Source overlap
 - Gate to Drain overlap
 - Gate to Channel/Bulk

- Junction Capacitance
 - Source to Bulk junction
 - Drain to Bulk junction
Overlap capacitances

- gate electrode overlaps source and drain regions
- X_D is overlap length on each side of channel
- $L_{\text{eff}} = L_d - 2X_D$
- Total overlap capacitance:

$$C_{\text{overlap}} = C_{GSO} + C_{GDO} = 2C_{ox}WX_D$$
Oxide capacitances

Channel

- **Channel capacitances**
 - Gate-to-source: C_{gs}
 - Gate-to-drain: C_{gd}
 - Gate-to-bulk: C_{gb}

- **Cutoff:**
 - No channel connecting source and drain
 - $C_{gs} = C_{gd} = 0$
 - $C_{gb} = C_{ox}WL_{eff}$
 - Total channel capacitance $C_{GC} = C_{ox}WL_{eff}$
Oxide capacitances

Channel

Linear mode

- Channel spans from source to drain
- Capacitance split equally between S and D

\[
C_{GS} = \frac{1}{2} C_{ox} WL_{eff} \quad C_{GD} = \frac{1}{2} C_{ox} WL_{eff} \quad C_{GB} = 0
\]

- Total channel capacitance \(C_{GC} = C_{ox} WL_{eff} \)

Saturation mode

- Channel is pinched off:

\[
C_{GD} = 0 \quad C_{GS} = \frac{2}{3} C_{ox} WL_{eff} \quad C_{GB} = 0
\]

- Total channel capacitance \(C_{GC} = 2/3 C_{ox} WL_{eff} \)
Gate-to-Channel Capacitance (summary)

\[C_{GC} = C_{gb} + C_{gs} + C_{gd} \]

<table>
<thead>
<tr>
<th>Operation Region</th>
<th>(C_{gb})</th>
<th>(C_{gs})</th>
<th>(C_{gd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>(C_{ox}W_{L_{eff}})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resistive</td>
<td>0</td>
<td>(C_{ox}W_{L_{eff}}/2)</td>
<td>(C_{ox}W_{L_{eff}}/2)</td>
</tr>
<tr>
<td>Saturation</td>
<td>0</td>
<td>(2/3)(C_{ox}W_{L_{eff}})</td>
<td>0</td>
</tr>
</tbody>
</table>
Gate-to-Channel Capacitance

Capacitance as a function of V_{GS} (with $V_{DS} = 0$)

Capacitance as a function of the degree of saturation

Bottom Line: Cap. components are non-linear
Diffusion Capacitance

\[C_{\text{diff}} = C_{\text{bottom}} + C_{sw} = C_j \times \text{AREA} + C_{jsw} \times \text{PERIMETER} \]
\[= C_j L_S W + C_{jsw} (2L_S + W) \]
Junction Capacitance

\[C_j = \frac{C_{j0}}{(1 - V_D / \phi_0)^m} \]

- \(m = 0.5 \): abrupt junction
- \(m = 0.33 \): linear junction

Graph showing the capacitance \(C_j \) as a function of voltage \(V_D \). The graph compares abrupt and linear junctions.
Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

\[
C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{\text{high}}) - Q_j(V_{\text{low}})}{V_{\text{high}} - V_{\text{low}}} = K_{eq} C_{j0}
\]

\[
K_{eq} = \frac{-\phi_0^m}{(V_{\text{high}} - V_{\text{low}})(1 - m)} \left[(\phi_0 - V_{\text{high}})^{1-m} - (\phi_0 - V_{\text{low}})^{1-m} \right]
\]
Capacitances in 0.25 μm CMOS process

<table>
<thead>
<tr>
<th></th>
<th>C_{ox} (fF/μm2)</th>
<th>C_{0} (fF/μm)</th>
<th>C_{j} (fF/μm2)</th>
<th>m_{j}</th>
<th>ϕ_{b} (V)</th>
<th>C_{jsw} (fF/μm)</th>
<th>m_{jsw}</th>
<th>ϕ_{jsw} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>6</td>
<td>0.31</td>
<td>2</td>
<td>0.5</td>
<td>0.9</td>
<td>0.28</td>
<td>0.44</td>
<td>0.9</td>
</tr>
<tr>
<td>PMOS</td>
<td>6</td>
<td>0.27</td>
<td>1.9</td>
<td>0.48</td>
<td>0.9</td>
<td>0.22</td>
<td>0.32</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Data Dependency

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

\[\frac{C_g}{C_0} \]

1.3 Case 1

1.1 Case 2

1.0 Case 3

.80 Case 4

.42 Case 5

.31 Case 6

.13 Case 7

FIG 2.12 Data-dependent gate capacitance
MOS Cap. Summary

FIG 2.14 Capacitances of an MOS transistor
Alpha-Power MOSFET Model

\[I_{ds} \propto (V_{gs} - V_t)^\alpha \]

1 < \alpha < 2

FIG 2.17 I-V characteristics for nMOS transistor with velocity saturation
Subthreshold Leakage

- **Dominant leakage mechanism**
- **Increases exponentially with temperature and Vt**

![Simulated I-V characteristics](FIG 2.15)
Gate Leakage

- Increases with gate oxide (SiO2) scaling
- High-k gate oxides can be used to lower gate leakage
- Independent of temperature

FIG 2.20 Gate leakage current from [Song01]
Junction Leakage

- Less significant than gate and subthreshold leakage
- Increases with temperature
Temperature Effects

- Mobility decreases with increase in T
- V_t decreases linearly with T

FIG 2.21 I–V characteristics of nMOS transistor in saturation at various temperatures
Temperature Effects

FIG 2.22 I_{dsat} vs. temperature
Temperature Effects

Chip Cooling can:

1. Improve Circuit performance
 - speed up transistors
 - decrease the delay of interconnects since metal resistance decreases with temperature
 - Lowers junction capacitance (increases depletion width)

2. Decrease leakage (mainly subthreshold)

3. Improve reliability of the chip
The Sub-Micron MOS Transistor

- Threshold Variations
- Subthreshold Conduction/Leakage
- Parasitic Resistances
Threshold voltage variation

- Until now, threshold voltage assumed constant
 - V_T changed only by substrate bias V_{SB}
- In threshold voltage equations, channel depletion region assumed to be created by gate voltage only
- Depletion regions around source and drain neglected: valid if channel length is much larger than depletion region depths
- In short-channel devices, depletion regions from drain and source extend into channel
Threshold voltage variation

Short-channel effects cause threshold voltage variation:

- V_T rolloff
 - As channel length L decreases, threshold voltage decreases
- Drain-induced barrier lowering
 - As drain voltage V_{DS} increases, threshold voltage decreases
- Hot-carrier effect
 - Threshold voltages drift over time
- Negative-Bias Temperature Instability (NBTI)
 - Issue in PMOS transistors
 - V_t drifts over time
 - Typical stress temperature 100-150 C
 - Typical oxide electric fields of 5-6 MV/cm
Even with $V_{GS}=0$, part of channel is already depleted.

Bulk depletion charge is smaller in short-channel device $\rightarrow V_T$ is smaller.
Threshold voltage variation

- Change in V_{T0}:
 - x_{dS}, x_{dD}: depth of depletion regions at S, D
 - x_j: junction depth

\[
\Delta V_{T0} = \frac{1}{C_{ox}} \sqrt{2q\varepsilon_{Si}N_A|2\phi_F|} \cdot \frac{x_j}{2L} \left[\left(\sqrt{1 + \frac{2x_{dS}}{x_j}} - 1 \right) + \left(\sqrt{1 + \frac{2x_{dD}}{x_j}} - 1 \right) \right]
\]

- ΔV_{T0} is proportional to (x_j/L)
 - For short channel lengths, ΔV_{T0} is large
 - For large channel lengths, term approaches 0
Threshold voltage variations

Graphically: V_{T0} versus channel length L

V_T Roll-off: V_T decreases rapidly with channel length
Drain-induced barrier lowering (DIBL)

- Drain voltage V_{DS} causes change in threshold voltage
- As V_{DS} is increased, threshold voltage decreases

Cause: depletion region around drain

- Depletion region depth around drain depends on drain voltage
- As V_{DS} is increased, drain depletion region gets deeper and extends further into channel
- For very large V_{DS}, source and drain depletion regions can meet → punch-through!

Issue: results in uncertainty in circuit design
Threshold Variations

Threshold as a function of the length (for low V_{DS})

Low V_{DS} threshold (for low L)

Drain-induced barrier lowering (DIBL)
Threshold voltage variation

- Hot-carrier effect
 - increased electric fields causes increased electron velocity
 - high-energy electrons can tunnel into gate oxide
 - This changes the threshold voltage (increases V_T for NMOS)
 - Can lead to long-term reliability problems
Threshold voltage variation

- **Hot electrons**
 - High-velocity electrons can also impact the drain, dislodging holes
 - Holes are swept towards negatively-charged substrate → cause substrate current
 - Called *impact ionization*
 - This is another factor which limits the process scaling → voltage must scale down as length scales
Threshold voltage variations

- Summary of threshold variations in short-channel devices
 - V_T rolloff: threshold voltage reduces as channel length L reduces
 - DIBL: threshold voltage reduces as V_{DS} increases
 - Hot-carrier effect: threshold voltage drifts over time as electrons tunnel into oxide
 - NBTI—causes V_t increase in PMOS transistors, strong dependence on Temperature.
Sub-threshold conduction (1)

- When $V_{GS} < V_T$, transistor is “off”
 - However, small drain current I_D still flows
 - Called *subthreshold leakage* current

- Model for subthreshold current:

 $$ I_D(\text{subthreshold}) = I_S We \frac{q}{kT} \left(A V_{GS} + B V_{DS} \right) $$

 - Increases as V_{GS} increases (potential barrier lowered)
 - Increases as V_{DS} increases (DIBL)
Sub-Threshold Conduction (2)

The Slope Factor

\[I_D \sim I_0 e^{\frac{qV_{GS}}{nkT}}, \quad n = 1 + \frac{C_D}{C_{ox}} \]

\[S \text{ is } \Delta V_{GS} \text{ for } I_{D2}/I_{D1} = 10 \]

\[S = n \left(\frac{kT}{q} \right) \ln(10) \]

Typical values for S:
60 .. 100 mV/decade
Sub-Threshold I_D vs V_{GS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{\frac{-qV_{DS}}{kT}} \right)$$

Subthreshold MOS Characteristics - EE141 0.25u process

V_{DS} from 0 to 0.5V

Lecture 8, ECE 225
Kaustav Banerjee
Sub-Threshold I_D vs V_{DS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{\frac{-qV_{DS}}{kT}} \right) \left(1 + \lambda \cdot V_{DS} \right)$$

![Graph showing Sub-Threshold MOS Characteristics - EBL 1 0.25u process]

Date/Time run: 01/30/02 16:26:16
Temperature: 27.0

V_{GS} from 0 to 0.3V
Leakage

- Effect of leakage current
 - “Wasted” power: power consumed even when circuit is inactive
 - Leakage power raises temperature of chip
 - Can cause functionality problem in some circuits: memory, dynamic logic, etc.

- Reducing transistor leakage
 - Long-channel devices
 - Small drain voltage
 - Large threshold voltage V_T
Leakage

- Leakage vs. performance tradeoff:
 - For high-speed, need small V_T and L
 - For low leakage, need high V_T and large L

- Process scaling
 - V_T reduces with each new process (historically)
 - Leakage increases ~10X!

- One solution: dual-V_T process
 - Low-V_T transistors: use in critical paths for high speed
 - High-V_T transistors: use to reduce power
Latchup

- CMOS process contains parasitic bipolar transistors
- Under certain conditions, these parasitic transistors can turn on, shorting power and ground rails and usually destroying the chip → latchup
- Avoiding latchup requires certain layout design rules, and careful control of process
- Latchup was a major problem in early CMOS processes
- Now, latchup is mainly issue for I/O circuits, with high current demands and possibly noisy voltages
Latchup

- Current flowing in well or substrate can forward-bias bipolar transistor
- Positive feedback between transistors: when one turns on, V_{dd} and Gnd are connected
- Solution: reduce R_{nwell} and R_{psubs}: use many substrate taps in layout
- High-current circuits use guard rings
Parasitic Resistances

Problem can be alleviated by silicided source/drain contacts

Silicide thickness is an important factor....
Future Perspectives

25 nm FINFET MOS transistor (Berkeley)