
201

11.8 Remote TCP/IP interface.

FIMMWAVE can be accessed remotely via TCP/IP. To do this, you must start
fimmwave.exe with the –pt argument:

-pt <portNo>

<portNo> is the TCP/IP port number on which FIMMWAVE should communicate.
FIMMWAVE will connect to the host machine through its domain name via port
<portNo>.

Once started this way, an external client program or script will be able to communicate
with FIMMWAVE on the specified port number - see below on how to write a client
program.

11.8.1 Operation

When accessing the FIMMWAVE Command-Line remotely, all options that interrupt the
flow of the program are disabled. In particular:

1. If a command produced an error, dialog boxes will not appear (thus interrupting
the flow of the program) and the execution of batch commands will not be
interrupted. FIMMWAVE will return the message “ERROR:<the error message
that FIMMWAVE generated>”. The user can then decide what action to take if
an error occurred.

2. Option “ask user to continue at each command” is also disabled if
sending a message remotely.

3. Option “enable recording window resizing, etc…” is also switched off.

11.9 Scripting

In principle, you can write a client program or script in any computer language that can
implement a TCP/IP connection, however we recommend using PYTHON, which
we provide on the CD Image.

The python interface has been designed to be very simple, yet very powerful - most of
the commands pass through one central function, which can accept arbitrary
PYTHON expressions. It automatically returns any results from the PD application as
appropriate types (strings, real, complex numbers, lists or 2D arrays thereof, etc).

As an alternative, a sample client program is also provided written in C++ together
with the necessary supplementary source files (see §11.9.5).

11.9.1 Installating Python

The option to install PYTHON is given to you upon first running the setup.exe on the
CD Image. If you chose not to install it at that time then you can obtain PYTHON
either by:

a.) In the PythonInstall subdirectory of the Application CD, the windows
installer has been supplied. To install PYTHON, run the file:
python16.exe and follow the online instructions.

b.) Downloading the installer from www.python.org/1.6.

202

We aso suggest that you install the Scripting Environment PYTHONWIN.

To do this, run the file win32all-133.exe.

In addition to installing the above programs, you must create two new environment
variables.

PYTHONPATH - This must point to the directory where all PYTHON
modules distributed with the application exist.

This allows PYTHON to find any extension modules without you having to
explicitly reference their paths – see the PYTHON help files for more details.

PATH – This must point to a directory where the Python executable is placed.

This allows you to run a script automatically from the Application main window.

 This is done as follows:

Select Settings/ControlPanel/System/Advanced/Environment Variables.
(MS Windows 2000)

Click New .

In the Variable name box type PATH

In the Variable value box type the path to where the python executable lies. E.g.
C:\Programs\Python23

Click OK .

Click New .

In the Variable name box type PYTHONPATH

In the Variable value box type the path to where the python modules lie. E.g.
C:\Program Files\PhotonD\fimmwave\Scripts

203

Click OK .

 See the figure below for reference.

Note. The PC now has to be restarted.

11.9.2 Example Python Script

Included in the Scripts directory is an example PYTHON script file called
MMIExample.py. This script performs the following operations:-

1. Connects to FIMMWAVE (already running with the project open)

2. Sets up a loop that varies the length of the middle section of the device “MMI”
and obtains the S11 matrix coefficient for each length

Note that this example assumes that you have the FIMMPROP extension
module.

The first thing that needs to be done is to start FIMMWAVE ensuring that it is serving
on port 5101. This is simply done:

– If FIMMWAVE is started via a shortcut key on the desktop, then the target (right

click/properties...) should be set to be “….\FIMMWAVE.exe -pt 5101.” See the figure
below for reference.

– Alternatively, if you start FIMMWAVE from a DOS box then use the command
“fimmwave.exe –pt 5101 localhost.”

If FIMMWAVE has been successfully started on port 5101 you will see a message in the
Messages window on the main window confirming this.

Before we create and run the script, we need to open the relevant project.

Open the project file “MMIproj.prj” from the ….\Scripts\MMIexample directory.

204

We will now write the Python Script that will connect to the program, calculate the
transmission for a variety of different lengths and extract the data.

Using notepad or some other text editor, open the project file “MMIExample.py”
from the ….\Scripts\MMIexample directory. You should see the following.

The first line imports all the necessary functions and classes from the previously
written module file (pdPythonLib.py) for running the script.

The pdPythonLib.py module file contains one class called pdApp. This class contains
all the functions needed to start, connect to and send messages to FIMMWAVE. A
summary of these functions is given in §11.9.3.

The second line in the script:

fimm = pdApp()

declares an instance of the pdApp class and stores the reference to this instance in the
variable fimm.

The third line connects to FIMMWAVE using one of the functions given in the table in
§11.9.3 assuming that the program is already running and using the default TCP/IP
port (which is port no. 5101).

Note. You do not have to always connect to an already running version of the
program. There is also command available to start FIMMWAVE. This is StartApp(). See
the table in §11.9.3 for more details on this function.

What we wish to do now is determine the commands to change the length of the
middle section of the MMI device and calculate the scattering matrix. As mentioned in
§11.2 most actions performed via the GUI will echo the relevant command in the
Command-Line Window.

Right-click on the centre section of the MMI device and select Edit Properties…

Type 200 in the section length/um box.

Click OK

This will change the length of the middle section of the FIMMPROP device.

from pdPythonLib import *

fimm = pdApp()

fimm.ConnectToApp()

The first few lines of MMIExample.py

205

Notice that the command “app.subnodes[1].subnodes[1].cdev.eltlist[3].length=200” was
generated in the Command-Line.

Similarly, click on icon on the toolbar to calculate the scattering matrix for
this device.

This generates the command “app.subnodes[1].subnodes[1].update”

All we need now is the command for extracting the data that we wish to collect. For
this example we wish to collect the transmission in the fundamental mode (at the
RHS).

Perhaps the easiest way to find this is to use the command completion box shown in §11.2.2.

In the Command-Line type “app.subnodes[1].subnodes[1].” This is the location of the
FIMMPROP device in the Project Tree.

Press the <TAB> key. You should see the following:

Scroll down to the command “cdev.” This allows you to access all properties of
the FIMMPROP device.

Press the <TAB> key again to insert this into the Command-Line.

Append a “.” to the command, and press the <TAB> key again to show the
command completion box again.

We are now interested in the coefficients of the scattering matrix, so we need to insert
the command “smat.”

Following the above steps you should complete the following command.

“app.subnodes[1].subnodes[1].cdev.smat.lr[1][1]”

Where lr[1][1] denotes the fundamental mode (mode 1 to mode 1- “[1][1]”) coefficient
for propagation from left to right (“lr”)

We now have all the commands we need, so lets finish writing a script to loop over a
range of lengths and extract this coefficient. This is done using the Exec method to
send commands to the application.

206

In your text editor write the following lines:

for i in range (100,700,50):

fimm.Exec("app.subnodes[1].subnodes[1].cdev.eltlist[3].length={i}")

fimm.Exec("app.subnodes[1].subnodes[1].update")

a = fimm.Exec("app.subnodes[1].subnodes[1].cdev.smat.lr[1][1]")

print a

Note

1) You need to include the indents for all commands in the “for loop”.

2) Also note that the user can also conveniently embed any python expression in the
string by enclosing it in {} as shown above. This embedding procedure is used in
the first line in the loop.

3) Later within the loop the following command:-

a = fimm.Exec("app.subnodes[1].subnodes[1].cdev.smat.lr[1][1];")

assigns the complex number returned by fimm.Exec into the PYTHON variable a.
Note that the returned variable “a” is a complex number.

Then, outside the loop (I.e. with no indent), write

raw_input(">>>>")

This will wait for the user to press return on the keyboard before continuing

Next, write

del fimm

This will delete the connection and close the script.

You should have the following:

We can now run the script.

From the FIMMWAVE Main Window select Scripts/Run a script…

Select MMIExample.py

After a short time you should see the following:

207

Notice that the script is waiting for action from the user before exiting.

Perhaps a more convenient way to extract data is to use the output log file described in
§11.2.4

From the FIMMWAVE main window select Options/Command-Line…

In the output logfile box define the name and convienent location of an output log
file. E.g. C:\temp\output.txt

Click OK

Now all output will be written to this file. For convenience, we are going to add one
command to our python script.

In the text editor, add the line
“fimm.Exec("app.subnodes[1].subnodes[1].cdev.eltlist[3].length")”

directly after the line
“fimm.Exec("app.subnodes[1].subnodes[1].cdev.eltlist[3].length={i}")”

Now run the script again.

An output logfile should be generated and should contain the following data.

208

11.9.3 pdApp Class Member Summary

This section contains a summary of the four member functions of the pdApp class
used to send messages to the Photon Design application.

StartApp

StartApp(pathname [,<portNo>])

This function starts and connects to the Photon Design application using the
executable file that is given in pathname. Upon execution, the current directory becomes
the directory where the Photon Design application is located. The optional parameter
portNo specifies which port to use. The default value for portNo is 5101. If portNo is
unavailable, an alternative port is automatically selected.

Note. In future versions, if you have a network license, it will be accessible as a
computation server from anywhere on your LAN.

ConnectToApp

ConnectToApp([hostname] [,portNo])

This function connects to an already running the Photon Design application that is
serving on hostname on the port given by portNo. Both parameters are optional with the
default hostname being “localhost” and the default portNo being 5101. If the port is
unavailable, the function tries to connect with a Photon Design application that might
be running on the next available port. If successful, the function returns an empty
string. Upon failure, it returns a string containing an error message.

Note. In future versions, if you have a network license, it will be accessible as a
computation server from anywhere on your LAN.

AddCmd

AddCmd(commStr [,varList])

This command appends commStr to the current list of commands that are waiting to be
sent to the Photon Design application (which are done so via a call to Exec - see
below).

The variable, commStr can be any valid Photon Design application Command-Line

expression, with the addition that any expression encapsulated in {} is first evaluated
using the PYTHON interpreter (unless the {} are themselves encapsulated in “”).

For example the following lines:-

from pdPythonLib import *

f = pdApp()

f.ConnectToApp()

a = 1.103

f.AddCmd(“MMI.lambda = {a}”)

a = 1.55

f.Exec()

will set MMI.lambda equal to 1.103.

209

The optional parameter varList is a list of PYTHON expressions that are resolved
before being embedded in commStr. The function will sequentially replace every %
symbol encapsulated within {} with the next evaluated expression in the list.
Complicated expressions can also be included in varList. For example:

from pdPythonLib import *

def myfunc:

a = 0.103

b = 1

f = pdApp()

f.ConnectToApp()

f.AddCmd(“MMI.lambda = {% + %}”,[a,b])

This will first resolve a, then b and insert them into the string before resolving the
whole expression within the {}.

varList is also useful since the pdApp class cannot resolve PYTHON expressions that
involve local or module variables. For example:

from pdPythonLib import *

def myfunc():

a = 1.103

 f = pdApp()

f.ConnectToApp()

f.AddCmd(“MMI.lambda = {a}”)

will not convert {a} to 1.103 since the variable a goes out of scope upon execution of
AddCmd. However:

from pdPythonLib import *

def myfunc:

a = 1.103

f = pdApp()

f.ConnectToApp()

f.AddCmd(“MMI.lambda = {%}”,[a])

will work since a is now one of the members of varList which gets parsed within
AddCmd.

Exec

Exec(commStr [,varList])

This function sends commands to the Photon Design application. Following the
evaluation of all expressions encapsulated in {}, commStr is appended to the current list
of commands and then the whole list is sent to the Photon Design application. The
function then receives the response from the Photon Design application. It returns
this response as any of the following basic types: a string, a floating point number, an integer
or a complex number. It can also return 1d arrays or 2d arrays of any of these basic types.
The array indices have a one-to-one correspondence with those in the Photon Design
application.

For example if in FIMMWAVE one were to type the following command

project.MMI.cdev.smat.lr

into the Command Line Window, FIMMWAVE might return the following:-

210

lr[1][1] (0.468,0.00745)

lr[1][2] (0.216,0.0698)

lr[2][1] (0.872,0.0003)

lr[2][2] (0.134,0.00629)

If the equivalent PYTHON command is sent (assuming the user has an instance of
FIMMWAVE referenced by the PYTHON variable f):-

a = f.Exec(“project.MMI.cdev.smat.lr”)

then a will be a 2d array with the following values:-

a[1][1] = (0.468 + 0.00745j)

a[1][2] = (0.216 + 0.0698j)

a[2][1] = (0.872 + 0.0003j)

a[2][2] = (0.134 + 0.00629j)

Finally, mixed-type lists can also be returned. For example:

f.AddCmd("myfile_rwg.evlist.mlp.evstart")

f.AddCmd("myfile_rwg.evlist.mlp.evend")

f.AddCmd("myfile_rwg.evlist.svp.lambda")

f.AddCmd("myfile_rwg.evlist.mlp.nx")

[start,end,wavelength,nx,nslice]= f.Exec("myfile_rwg.nslice")

The last command in this list sets each of the PYTHON variables in the list to the
returned value of the AddCmd line.

Note the optional parameter varList (described above) can also be used with the Exec
command. This allows the calling of Exec from within local functions of user-defined
modules and classes. See AddCmd for more details. The table below is a summary of
these four commands.

Function Name Parameters What it Does Return Value

StartApp pathname: (No default),
portNo: (default = 5101)

Starts the Photon Design
application on the path given by
pathname and connects to it
using the port given by portNo. If
this port is unavailable, it uses the
next available port

An empty string if successful or a
string containing an error message
if it has failed at some stage.

ConnectToApp Hostname: (default =
"localhost"), portNo:
(default = 5101)

Connects to an already running
version of the Photon Design
application given by the hostname
and serving on the port given by
portNo.

An empty string if successful or a
string containing an error message
if it has failed at some stage.

AddCmd commStr: (No default) ,
varList: (default = [])

Firstly, this function evaluates any
python expressions embedded in
commStr. It then appends the
command given in commStr to
the current list of commands
waiting to be executed (by a call
to Exec)

None

Exec commStr: (No default),
varList: (default = [])

Firstly, this function evaluates any
python expressions embedded in
commStr. It then appends this to
the current list of commands
before sending this entire list to
FIMMWAVE. Finally it receives the
response from the Photon Design
application and flushes the

This function returns one the
following basic types: a complex
number, an integer, a floating point
number or a string. However, it can
also return a 1d array or a 2d array
of any of those basic types or a
mixed-type list containing any of

211

command list. these types.

11.9.4 Python Client

PdAppclient.py can be used as a PYTHON interface to the scripting engine of all
Photon Design (PD) applications (such as FIMMWAVE). This makes it possible to
communicate with a running executable remotely via TCP/IP and use the power of
the fully-fledged scripting language to write complex FIMMWAVE routines with relative
ease.

To run this client program from the command prompt, simply open the Scripting
Environment PYTHONWIN. Open and run the script PdAppclient.py giving as
arguments:

Port number - the TCP?IP port number

Hostname – the name or IP address of the machine on which the PD application
is running.

Alternatively, navigate to the directory that contains PdAppclient.py and type:

python pdAppclient.py <portNo> <hostname>

Another example of what can be achieved using PYTHON clients is given at the
following website: www.python.org/workshops/1997-10/proceedings/beazley.html .

Please note we are not able to provide technical support in debugging your client
programs or scripts (unless technical support is required on the syntax or the Command-

Line features of FIMMWAVE commands).

11.9.5 Using C++

As an alternative to PYTHON, we provide on the CD Image a c++ client.

There is additional documentation on writing client programs in the file
examples\SourceCode\pdAppClient.cpp. If you wish to use another language
other than C++ or PYTHON, we suggest you study the C++ example carefully.

In order to send messages to FIMMWAVE, you should use the Client class provided with
the distribution (see client.cpp, client.h). The console skeleton program
(pdAppClient.cpp) is provided showing you how to use it. To compile it, you will
need all the other source files provided in the distribution. The client program is self-
explanatory and provides a Command-Line interface for sending commands remotely to a
running FIMMWAVE program. We suggest that you first familiarise yourself with this
program by compiling it and running it. You can then use it as a starting point for
writing your own more complex routines.

The Client class

The client class is quite simple to use: it only has 2 members that need explanation

bool Connect(int portNo,const char* serverName=NULL);

const char* sendMessage(const char* command);

212

The first simply initialises the client and connects via TCPIP port “portNo” to a
running FIMMWAVE program situated on the computer with IP server name
“serverName”.

The second sends the command “command” to FIMMWAVE. FIMMWAVE will then
return the output once execution of the command (or command batch) is completed.

The return string consists of a series of lines of the following format:

RETVAL: output string

or

ERROR: error message

The first will be appended for every command sent that makes FIMMWAVE return a
non-empty string. The return string is exactly the same as the one written to the output
pane in the FIMMWAVE command window. The second will be appended whenever an
error occurs.

