Preliminary

Operation Manual: SUI[™] KTS Family Compact InGaAs Snapshot Camera

3490 US Route 1 Building 12, Princeton, NJ 08540 Tel: 1-609-520-0610 • Fax: 1-609-520-0638 Go to: www.isr.goodrich.com/sui

NOTICES

©2006 Goodrich Corporation, all rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or mechanical, without the express written permission of Goodrich Corporation. Every effort is made to ensure the information in this manual is accurate and reliable. Use of the products described herein is understood to be at the user's risk. Goodrich Corp. assumes no liability whatsoever for the use of the products detailed in this document and reserves the right to make changes in specifications at any time and without notice.

The modifiers and phrases SUI[™], Sensors *knows* IR[™], Imaging Beyond the Visible[™], Visible-InGaAs[™], NIR Perfect[™], NI[®], IMAQ[™], LabVIEW[®] and Camera Link[®] are used in this manual. "SUI", "Sensors *knows* IR", and "NIR Perfect" are all trademarks of Goodrich Corporation. "NI, IMAQ and LabVIEW are trademarks of National Instruments. Camera Link is a registered trademark of the Automated Imaging Association. All other trademarks or intellectual property mentioned herein belong to their respective owners.

The SUI cameras and technical documentation are subject to the controls of ITAR 22_CFR 121.1. Transfer of this item by any means to a foreign person or entity, whether in the US or abroad, without appropriate export authorization, is prohibited and may result in substantial penalties.

Table of Contents

1.1 SYSTEM DESCRIPTION 6 1.2 SYSTEM CONTENTS 6 1.3 SAFETY CONSIDERATIONS 7 1.4 OPTICAL CONSIDERATIONS 7 1.5 CAMERA CLEANING 7 2 GETTING STARTED 9 2.1 HARDWARE INSTALLATION 9 2.2 SOFTWARE INSTALLATION 9 3.1 HARDWARE INTERFACES 12 3.1.1 Power Input 10 3 CAMERA HARDWARE INTERFACES 12 3.1.1 Power Input 12 3.1.2 Camera Link Data Interface 13 3.1.3 Video Output 15 3.1.4 Video Output 15 3.1.5 Status LED 15 3.2.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 Lens Mounting Plate 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mou	1 INTRODUCTION	6
2 GETTING STARTED 9 2.1 HARDWARE INSTALLATION 9 2.2 SOFTWARE INSTALLATION 10 3 CAMERA HARDWARE INTERFACES 12 3.1 CAMERA ELECTRICAL INTERFACES 12 3.1.1 Power Input 12 3.1.2 Camera Link Data Interface 13 3.1.3 Video Output 15 3.1.4 Trigger Input 15 3.1.5 Status LED 15 3.1.5 Status LED 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 Camera OTTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.1 Lens Mounting Plate 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA SYSTEM OPERATION 22 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMAND FORMAT AND RESPONSE	 1.1 System Description 1.2 System Contents	6 7 7 7
2.1 HARDWARE INSTALLATION 9 2.2 SOFTWARE INSTALLATION 10 3 CAMERA HARDWARE INTERFACES 12 3.1 CAMERA ELECTRICAL INTERFACES 12 3.1.1 Power Input. 12 3.1.2 Camera Link Data Interface 13 3.1.3 Video Output. 15 3.1.4 Trigger Input. 15 3.1.5 Status LED 15 3.1.5 Status LED 15 3.2 CAMERA MICHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-MOUNT LENS Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.3 STARTUP MESSAGING 26 5.4 COMMAND FORMAT AND RESPONSE 24 5.4.1 Configuration Commands 27<	2 GETTING STARTED	9
2.2 SOFTWARE INSTALLATION 10 3 CAMERA HARDWARE INTERFACES 12 3.1 CAMERA ELECTRICAL INTERFACES 12 3.1.1 Power Input 12 3.1.2 Camera Link Data Interface 13 3.1.3 Video Output 15 3.1.4 Trigger Input 15 3.1.5 Status LED 15 3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.3 STARTUP MESSAGING 26 5.4 COMMAND FORMAT AND RESPONSE 24 5.4 Commands 27	2.1 HARDWARE INSTALLATION	9
3 CAMERA HARDWARE INTERFACES. 12 3.1 CAMERA ELECTRICAL INTERFACES. 12 3.1.1 Power Input. 12 3.1.2 Camera Link Data Interface. 13 3.1.3 Video Output. 15 3.1.4 Trigger Input. 15 3.1.5 Status LED 15 3.1.6 CAMERA MECHANICAL INTERFACES. 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES. 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.1 Lens Mounting Plate 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.3 COMMUNICATION PROTOCOL 24 5.4 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4.1 Configuration Commands 37 5.4.2 Serial Communication	2.2 Software Installation	. 10
3.1 CAMERA ELECTRICAL INTERFACES 12 3.1.1 Power Input. 12 3.1.2 Camera Link Data Interface 13 3.1.3 Video Output. 15 3.1.4 Trigger Input. 15 3.1.5 Status LED 15 3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.3 STARTUP MESSAGING 26 5.4 Communication Interface Commands 37 5.4.2 Serial Commun	3 CAMERA HARDWARE INTERFACES	. 12
3.1.1 Power Input. 12 3.1.2 Camera Link Data Interface. 13 3.1.3 Video Output. 15 3.1.4 Trigger Input. 15 3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA SYSTEM OPERATION 22 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMAND FORMAT AND RESPONSE 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.4.1 Configuration Commands. 27 5.4.2	3.1 CAMERA ELECTRICAL INTERFACES	. 12
3.1.2 Camera Link Data Interface 13 3.1.3 Video Output 15 3.1.4 Trigger Input 15 3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMAND FORMAT AND RESPONSE 24 5.4 COMMAND FORMAT AND RESPONSE 24 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands	3.1.1 Power Input	. 12
3.1.3 Video Output 15 3.1.4 Trigger Input 15 3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 5.2 COMMAND PROTOCOL 24 5.4 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4.1 Configuration Commands 39 5.4.2 Serial Communication Interface	3.1.2 Camera Link Data Interface	.13
3.1.5 Status LED 15 3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.3 STARTUP MESSAGING 22 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34	3.1.3 VIDEO OULPUL	. 15
3.2 CAMERA MECHANICAL INTERFACES 16 3.2.1 Camera Dimensions 16 3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands 34 5.4.5 Pixel Clock Commands 54 5.4.6 Frame and Exposure	3.1.5 Status LED	. 15
3.2.1Camera Dimensions163.2.2Mounting the Camera163.2.3Thermal Management173.3CAMERA OPTICAL INTERFACES183.3.1Lens Mounting Plate183.3.2C-Mount Lens Adapter184PRINCIPALS OF OPERATION204.1FOCAL PLANE ARRAY OPERATION204.2CAMERA SYSTEM OPERATION204.2CAMERA SYSTEM OPERATION205CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE245.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING.265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands.345.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.8Gain Commands585.4.8Gain Commands58	3.2 CAMERA MECHANICAL INTERFACES	. 16
3.2.2 Mounting the Camera 16 3.2.3 Thermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands 34 5.4.5 Pixel Clock Commands 54 5.4.6 Frame and Exposure Control Commands 54 5.4.7 Trigger Commands 58 5.4.8 Gain Commands 58	3.2.1 Camera Dimensions	. 16
3.2.3 Inermal Management 17 3.3 CAMERA OPTICAL INTERFACES 18 3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands 43 5.4.5 Pixel Clock Commands 54 5.4.6 Frame and Exposure Control Commands 54 5.4.7 Trigger Commands 54 5.4.8 Gain Commands 58	3.2.2 Mounting the Camera	. 16
3.3.1 Lens Mounting Plate 18 3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4 COMMAND SET 26 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 34 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands 43 5.4.5 Pixel Clock Commands 54 5.4.6 Frame and Exposure Control Commands 54 5.4.8 Gain Commands 58	3.2.3 Inermal Management	. // 10
3.3.2 C-Mount Lens Adapter 18 4 PRINCIPALS OF OPERATION 20 4.1 FOCAL PLANE ARRAY OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 4.2 CAMERA SYSTEM OPERATION 20 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 22 5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE 24 5.1 COMMUNICATION PROTOCOL 24 5.2 COMMAND FORMAT AND RESPONSE 24 5.3 STARTUP MESSAGING 26 5.4 COMMAND SET 26 5.4.1 Configuration Commands 27 5.4.2 Serial Communication Interface Commands 39 5.4.3 Correction Commands 39 5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands 43 5.4.5 Pixel Clock Commands 54 5.4.6 Frame and Exposure Control Commands 54 5.4.8 Gain Commands 58 5.4.8 Gain Commands 58	3 3 1 Lens Mounting Plate	. 18
4PRINCIPALS OF OPERATION204.1FOCAL PLANE ARRAY OPERATION204.2CAMERA SYSTEM OPERATION225CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE245.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands395.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands58	3.3.2 C-Mount Lens Adapter	. 18
4.1FOCAL PLANE ARRAY OPERATION.204.2CAMERA SYSTEM OPERATION225CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE245.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE.245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands58	4 PRINCIPALS OF OPERATION	. 20
4.2CAMERA SYSTEM OPERATION225CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE245.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands58	4.1 FOCAL PLANE ARRAY OPERATION.	. 20
5CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE245.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands58	4.2 CAMERA SYSTEM OPERATION	. 22
5.1COMMUNICATION PROTOCOL245.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands58	5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE	. 24
5.2COMMAND FORMAT AND RESPONSE245.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.1 Communication Protocol	. 24
5.3STARTUP MESSAGING265.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.2 Command Format and Response	. 24
5.4COMMAND SET265.4.1Configuration Commands275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.3 STARTUP MESSAGING	.26
5.4.1Communication Communication275.4.2Serial Communication Interface Commands345.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.4 COMMAND SET	.20
5.4.3Correction Commands395.4.4Image Enhancement and Automatic Gain Control (AGC) Commands435.4.5Pixel Clock Commands545.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.4.2 Serial Communication Interface Commands	. 34
5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands	5.4.3 Correction Commands	. 39
5.4.5 Pixel Clock Commands545.4.6 Frame and Exposure Control Commands545.4.7 Trigger Commands585.4.8 Gain Commands65	5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands	. 43
5.4.6Frame and Exposure Control Commands545.4.7Trigger Commands585.4.8Gain Commands65	5.4.5 Pixel Clock Commands	. 54
5.4.8 Gain Commands	5.4.6 Frame and Exposure Control Commands	. 54 50
	5.4.8 Gain Commands	. 65

5.4.9 Imager Scanning Commands	66
5.4.10 Analog Video Commands	67
5.4.11 Thermal Commands	72
5.4.12 Digital Output Commands	74
5.4.13 Camera Information Commands	75
5.4.14 Status and Reset Commands	78
5.4.15 Test Commands	84
6 SPECIFICATIONS	87
6.1 Mechanical Specifications	87
6.2 INTERFACES	87
6.3 Environmental and Power Specifications	87
6.4 ELECTRO-OPTIC PERFORMANCE SPECIFICATIONS	88
7 PRODUCT SUPPORT	89
7.1 Common Problems and Solutions	89
7.2 Customer Support	91
7.3 WARRANTY	91
8 LIST OF ABBREVIATIONS	93
9 NOTES	94

APPENDIX A: Camera Command Summary

APPENDIX B: Factory Default Global and Operational Parameters

List of Figures

Figure 1.	Camera back panel and power connector pin assignment	. 12
Figure 2.	Camera Link interface timing diagram.	. 14
Figure 3.	Mechanical drawing of camera body including optical path stack-up	. 17
Figure 4.	Mechanical drawing of C-mount lens adapter, all dimensions in inches	. 19
Figure 5.	Typical quantum efficiency of SUI backside illuminated FPAs.	. 20
Figure 6.	Typical responsivity of SUI backside illuminated FPAs	. 20
Figure 7.	Simplified pixel schematic.	. 21
Figure 8.	Camera system signal flow diagram	. 22
Figure 9.	Camera memory layout.	. 27
Figure 10	. Automatic gain control algorithm flow chart	. 44
Figure 11	. Example of enhancement algorithm effect on frame histogram	. 46
Figure 12	. Trigger mode 0 exposure and readout timing sequence.	. 58
Figure 13	. Trigger mode 1 exposure and readout timing sequence	. 59
Figure 14	. Trigger mode 2 exposure and readout timing sequence	. 60
Figure 15	. Trigger mode 3 exposure and readout timing sequence	. 61

List of Tables

Table 1.	Digital output SDR 26-pin connector signal assignment	13
Table 2.	Line format of camera command return strings	25
Table 3.	User configurable global settings.	29
Table 4.	User configurable operational settings.	30
Table 5.	AGC algorithm configurable parameters	43
Table 6.	Error value descriptions, causes and resolutions	79

1 INTRODUCTION

1.1 SYSTEM DESCRIPTION

The SUI KTS camera family offers users a compact, snapshot Indium Gallium Arsenide Near Infrared Camera, with this manual documenting use of these models:

	5
SU320KTS-1.7RT/RS170	Compact snapshot InGaAs camera
SU320KTSVis-1.7RT/RS170	Compact snapshot Visible-InGaAs camera

Designed for laboratory or field use, these Indium Gallium Arsenide Short-Wave Infrared (SWIR) Cameras stabilize the focal plane array temperature and only require an external AC-to-DC adapter (12 V output adapter provided). Their optical sensitivity ranges from 0.9 μ m to 1.7 μ m or from 0.4 μ m to 1.7 μ m for the Visible-InGaAs SU320KTSVis. The lack of cryogenic liquids or moving parts makes the SUI KTS Camera Family suitable for both industrial applications and laboratory research.

The analog output signal of the focal plane array (FPA) is digitized with a resolution of 12 bits using an analog-to-digital converter. The user can select to process the digitized data using a pixel-by-pixel two-point correction (offset and response gain) and bad pixel substitution. The offset compensates for the dark current signal, and the gain compensates for the photoresponse non-uniformity. The digital image is then stored in a video frame buffer and converted into composite analog video using a 12-bit digital-to-analog converter. The digital signal is also available in a Camera Link compatible format at the SDR 26-pin connector of the camera body along with the analog video. Factory corrections are available for a range of preconfigured integration time and FPA sensitivity combinations. Offset correction, gain correction, and pixel substitution can be turned off using ASCII commands sent through the Camera Link asynchronous serial communication port.

The default analog camera output is interlaced EIA-170 standard video. This video scan format can be displayed on an EIA-170 monitor or recorded with NTSC equipment.

1.2 System Contents

A complete order for a SU-KTS includes the following:

- SU320KTS-1.7RT camera body
- C-mount lens adapter
- 25 mm, f/1.4 C-mount lens
- AC adapter (power supply)
- SMA to BNC cables, 6 feet (2 pieces)
- BNC to phono plug adapter
- This manual
- Carrying case

SUI, Goodrich Corporation

• SUI mini CD containing supporting documentation and software, including the configuration file for National Instruments PCI-1428 frame grabber cards

1.3 SAFETY CONSIDERATIONS

The camera can be powered using an 8-16 V DC power supply capable of providing a minimum of 4 W of power. Do not exceed the voltage maximum or damage might occur. It is also critical that the power connections be made to the proper connector pins.

The focal plane array is mounted behind a protective window with a broadband antireflective coating. When changing lenses or mounting the camera in any optical arrangement, **take care not to scratch or touch this window.**

To prevent fire, shock hazard or damage to the camera, do not expose to rain or excessive moisture. Do not disassemble camera. Do not remove screws or covers. There are no user serviceable parts inside. **Removal of any panel will void the warranty.**

When handling the camera take precautions to avoid electro-static discharge (ESD) to any exposed electrical connector pins.

1.4 OPTICAL CONSIDERATIONS

The camera is fitted with a C optical lens mount. Glass lenses are generally compatible with SUI, Goodrich Corporation's short wave infrared cameras. Please note that the antireflective coatings on most lenses are optimized for visible light and have larger reflectivity in the short wave infrared. Also, optimum image sharpness requires a lens designed specifically for the short wave infrared.

1.5 CAMERA CLEANING

Before performing any camera cleaning operation, power down the camera.

To clean the outside of the camera enclosure or the power supply housing use a soft cloth moistened with a small amount of water or isopropyl alcohol.

If the protective window of the focal plane array requires cleaning, the following steps are recommended:

• With the focal plane array mounted in the camera, use clean, dry compressed air to blow loose particles off the window. This step alone is often sufficient to clean the

window. Do not use compressed air gas canisters for this operation, since they may contain fluid and can thermally shock the window.

• Using lint free, lens cleaning paper moistened with isopropyl alcohol carefully wipe the surface of the window by dragging the moistened paper from one edge of the window to the other in a single motion. The paper may need to be folded so that it does not contact any other surface than the glass but covers the window from edge to edge. Use the paper only once and wipe in one direction across the window surface. If the surface is still not clean, repeat this step always wiping in the same direction using a new piece of moistened cleaning paper until the window is clean.

2 GETTING STARTED

2.1 HARDWARE INSTALLATION

To connect your camera hardware, perform the following:

- 1. Mount the camera body, if applicable. See section 3.2.2 for additional information on provisions for camera mounting.
- 2. Mount the optics to be used to the camera, if applicable. See section 3.3 for additional information.
- 3. If using the SU-KTS's digital output, install the frame grabber you will be using for data collection following the manufacturer's instructions.

Note: The SU-KTS camera can be interfaced with most frame grabbers, but SU has verified its operation with National Instruments PCI-1428 cards only. For information on presently supported National Instruments frame grabber models, contact a SUI, Goodrich Corporation application engineer. For National Instruments frame grabbers, installation of the software drivers before installation of the frame grabber hardware is recommended. (See section 2.2 for additional information about software installation.)

- 4. If applicable, connect the Camera Link cable to the frame grabber and the camera, inserting the connector so it is fully seated and the shell is parallel to the mating panel surface. Tighten the cable retention screws on both ends of the cable.
- 5. If using the SU-KTS's analog video, connect the camera video output to the input of the receiving equipment using an appropriate coaxial video cable. The provided SMA to BNC cables and BNC to phono plug adapter can be used to make this connection, if appropriate. Tighten the coupling nut of the SMA connector to camera body video output connector. Rotate the cable BNC connector bayonet until locked to its mating connector at the receiver. See section 3.1.3 for more detailed electrical specifications of the camera's analog video output.
- 6. If the supplied AC adapter is not being used, test the camera power source for proper voltage, polarity, and pin connections as indicated in section 3.1.1 before connecting the power cable to the camera. **Do not exceed the voltage maximum or damage will occur.** With the power source off, insert the power connector into the camera until locked. Apply power to the camera and, if the camera is configured to power-up with the LED enabled, wait for the status LED to turn solid green. See section 3.1.5 for information on the status LED operation.

SUI, Goodrich Corporation Imaging Beyond Visible[™]

7. If the TTL trigger input of the camera is to be used, connect the SMA to BNC cable to the camera and the trigger signal source. Tighten the coupling nut of the SMA connector to camera body trigger input connector. Rotate the cable connector bayonet until locked to its mating connector on trigger signal source. The signal source must be compliant with the specifications of section 3.1.4. Take care not to swap the video output and trigger input connections.

2.2 SOFTWARE INSTALLATION

To install software to command or collect digital data from the camera, perform the following:

- 1. Install driver software required by the frame grabber being used following the manufacturer's instructions. Be sure to verify that the host computer being used meets the minimum system requirements specified by the frame grabber manufacturer. If a National Instruments frame grabber is being used, National Instruments IMAQ drivers must be installed. NI-IMAQ Vision is National Instruments' library of powerful functions for image processing that is distributed with their imaging frame grabber cards. This software library easily integrates with National Instruments LabVIEW Software, an extensive instrument-programming environment. Note: The SU-KTS will work with other Camera Link compatible frame grabber cards, but SUI provides support for NI cards only.
- Configure the frame grabber to accept the Camera Link interface signal timing 2. documented in section 3.1.2. If using a National Instruments PCI-1428 frame grabber, a camera configuration file (extension .ICD) is provided on the SUI mini CD shipped with the camera. This configuration file properly configures the frame grabber for the SU-KTS's Camera Link interface timing and allows the selection of camera operational modes. The mini CD contains a README file that documents the applicable ICD file for a particular camera model number. As a camera model may be configured in different ways for different applications or customers, there may be several different part numbers associated with an SUI camera model. Therefore, it is best to check the camera part number printed on the camera serial plate (cameras produced after June 2006) or in the original shipping documentation. Copy the appropriate PCI-1428 configuration file from the mini CD to the IMAQ data directory to allow the IMAQ driver to access them (typical directory location is C:\Program Files\National Instruments\NI IMAQ\Data).
- 3. Test camera data collection. Typically software tools provided with the frame grabber can perform simple data collection operations to enable the chosen frame grabber configuration to be tested. If a National Instruments frame grabber is being used, the NI Measurement and Automation Explorer (MAX) can be used to configure and validate the hardware installation. See National

Instruments documentation for operation of the Measurement and Automation Explorer. If more information is required on interfacing with the NI-IMAQ library, call a NI representative or SUI, Goodrich Corporation. It is recommended that data collection be successfully exercised using frame grabber supplied tools before attempting to collect data with any third-party software applications.

4. Install any application software to be used following the manufacturer's instructions. The SUI Image Analysis (SUI-IA) software application that can be used for data collection and analysis with the SU-KTS camera is distributed on the SUI mini CD. See the SUI Image Analysis Installation and Operation Manual, distributed on the SUI mini CD, for information on use of this application. SUI-IA allows the user to do the following: control the camera settings, acquire images, store these images or sequences of images (as movies), measure relative intensities of pixels, regions or spots, contrast enhance the image with tools like Histogram Equalization, take and store line profiles or histogram data, and apply false color intensity maps to the images.

3 CAMERA HARDWARE INTERFACES

3.1 CAMERA ELECTRICAL INTERFACES

All electrical interfaces to the SU-KTS camera are located on the camera back panel. The back panel connections are identified in Figure 1.

Figure 1. Camera back panel and power connector pin assignment.

3.1.1 Power Input

An AC adapter is provided with a cable that connects to the back panel of the camera. The cable mates with the connector labeled *POWER* shown in Figure 1. The provided AC adapter plugs into a 100-240 VAC (47 Hz - 63 Hz) outlet and supplies 12 V to the camera.

If the provided AC adapter is not used, DC power between +8 V and +16 V must be applied with the proper polarity to the power connector. It is critical that the power connections be made to the proper connector pins, as shown in Figure 1. Do not exceed the maximum input voltage or damage might occur. The power source used must be able to supply a minimum of 4 W of continuous power to the camera. A power source with a maximum peak-to-peak ripple of 1 % of the input voltage at full load is recommended to ensure camera performance.

The status LED light on the back panel will illuminate when the camera is powered if the status LED is enabled. See section 3.1.5 for information on the status LED operation.

3.1.2 Camera Link Data Interface

The digital data interface to the camera is through a Camera Link compatible interface using low-voltage differential signaling (LVDS). SUI, Goodrich Corporation cameras can be interfaced to most frame grabbers, but they have verified operation with National Instruments cards only. An optional imaging pack is available from SUI, Goodrich Corporation that includes a NI PCI-1428 frame grabber card and SDR to MDR 26-conductor Camera Link cable.

The signal assignment for the digital interface SDR 26-pin connector is shown in Table 1. This assignment corresponds to the Factory Configuration of the Camera Link standard.

SDR-26 Connector Pin	Camera Link Signal	SDR-26 Connector Pin	Camera Link Signal
1	Inner shield (camera GND)	20	SerTC-
14	Inner shield (camera GND)	8	SerTFG-
2	X0-	21	SerTFG+
15	X0+	9	CC1-
3	X1-	22	CC1+
16	X1+	10	No connect
4	X2-	23	No connect
17	X2+	11	No connect
5	Xclk-	24	No connect
18	Xclk+	12	No connect
6	Х3-	25	No connect
19	X3+	13	Inner shield (cable sense)
7	SerTC+	26	Inner shield (camera GND)

Table 1. Digital output SDR 26-pin connector signal assignment.

The 12-bit image data PIX[11..0] (MSB corresponding to bit 11) is presented on the Camera Link output with PIX[7..0] connected to port A[7..0] and PIX[11..8] to port B[3..0]. The STRB frequency is 24.420 MHz. The average DVAL frequency during a valid line corresponds to the focal plane array pixel rate of 6.105 MHz. One pixel data word is transferred on each STRB cycle that the DVAL signal is active. A timing diagram for the Camera Link interface is shown in Figure 2. The signals STRB, DVAL, LVAL, and and FVAL correspond to the signal names of the Camera Link standard issued by the Automated Imaging Association.

Figure 2. Camera Link interface timing diagram.

SUI, Goodrich Corporation

Imaging Beyond Visible[™]

Asynchronous serial communication to the camera and a trigger input source are also supported on the Camera Link compatible interface on the SERTC±/SERTFG± and CC1± signals, respectively, as provided by the Camera Link specification. See section 5 for a description of the asynchronous serial communication protocol and command set used by the camera. See section 5.4.7 for a description of supported camera trigger modes.

3.1.3 Video Output

The analog composite video output is available at the SMA connector on the back of the camera labeled *VIDEO OUT*. This is the upper left connection in Figure 1. The video output format of the SU320KTS-1.7RT is interlaced. The timing is such that the image can be directly displayed on a standard video monitor, captured with a video-input frame grabber board, or recorded with a VCR. The video output is nominally 1 V peak to peak with 714 mV of video and 286 mV of sync when a 75 Ω termination is used. The use of a 50 Ω or 75 Ω coax cable between the *VIDEO OUT* on the camera back panel and the receiving equipment is recommended. A 6-foot 50 Ω SMA-to-BNC coax cable is provided. See section 5.4.10 for a description of the camera's analog video commands that affect the timing relationship between the Camera Link digital data and the analog video output.

3.1.4 Trigger Input

A trigger signal input connection is available at the SMA connector labeled *TRIGGER IN* on the back of the camera as shown in Figure 1. This input can be used for control of the frame rate and exposure time. This trigger input accepts signals from 0 V to 5 V maximum. The thresholds for the trigger input are < 0.8 V for logic low and > 3.0 V for logic high. The trigger input presents a 3.0 K Ω load to ground to the signal driving source.

3.1.5 Status LED

The status LED will illuminate whenever power is applied to the camera and the LED is enabled.

If the status LED is steadily illuminated red or green, it indicates the status of the temperature control of the focal plane array. When the status LED is illuminated red, the camera has not yet locked the focal plane array to its temperature set point (see Appendix B for focal plane array temperature set point). The temperature is considered locked when the imager is regulated to within $\pm 0.1^{\circ}$ C of the set point. The time required for the array temperature to reach lock from initial power on will range from 1 to 5 minutes depending on the ambient temperature conditions of the camera. The greater the difference between the ambient temperature and the set point temperature, the greater the time required to achieve temperature lock. The camera status LED will illuminate green when temperature lock is achieved.

If the temperature cannot be held, the camera head status LED will turn red. Loss of temperature lock while control is enabled can occur for several reasons. The most common reason is that the camera is being operated at an ambient temperature greater

than specified maximum. Another possibility is that the camera is operated in an enclosed environment that limits the ability of the case to radiate heat. (See section 3.1.6 for more information on camera thermal management.) If the status LED continues to indicate lack of temperature lock while the temperature control is enabled and after these conditions have been remedied, disconnect power and contact the factory.

The status LED will flash between red and green on a one second interval if a camera error is encountered and the LED is enabled. (See section 5.4.14 for further details.)

3.2 CAMERA MECHANICAL INTERFACES

3.2.1 Camera Dimensions

Dimensions (Length x Width x Height)	71.7 mm x 52.1 mm x 52.1 mm 2.82 in. x 2.05 in. x 2.05 in Length includes I/O connectors and lens adapter
Weight	< 270 g (no lens)
Lens Mount	C-mount
Sensor Alignment	17.6 mm behind the C-mount flange (physical) 17.1 mm behind the C-mount flange (optical)

A mechanical drawing of the camera body including the optical path stack-up is shown in Figure 3.

3.2.2 Mounting the Camera

Туре	Description	Hole Pattern	
Tripod mount (bottom)	2 tapped ¼-20 holes		
mpod mount (bottom)	2 tapped M6-6H holes	III-IIIIe	
Elat plate mount (front)	M42 x 1 mm thread (front plate)	Circlo	
	M25.4 x 1.26 mm thread (C-mount adapter)		

Figure 3. Mechanical drawing of camera body including optical path stack-up.

Note: There are two different mounting holes sizes shown in the lower left of the drawing when viewed in landscape mode.

3.2.3 Thermal Management

If the focal plane array is unable to reach or hold its temperature set point, additional thermal management of the camera may be necessary. See section 3.1.5 and section 5.4.11 for methods of determining the focal plane array temperature status. The SU-KTS camera housing has been designed to efficiently transfer heat from the focal plane array to the outside of the enclosure. The convection of heat from the enclosure can be significantly improved by providing a flow of air over the case. If the environment of the camera does not allow forced air movement, conduction of heat through a heatsink in contact with the camera case is recommended.

3.3 CAMERA OPTICAL INTERFACES

3.3.1 Lens Mounting Plate

The Goodrich SUI KTS cameras utilize a lens mounting plate with an M42X1 thread, that is, a 42 mm diameter hole with a 1 mm thread pitch. This mounting plate design permits adapting the camera to a variety of standard lens mount formats. An adapter to a standard C-mount lens format is provided with the camera.

Please take note that the wavelength range accepted by these SWIR cameras is quite broad and beyond the range for which commercial lenses have been designed. Depending on the actual wavelengths imaged in the users' applications, the lens focus markings will be shifted. Another factor is that, due to a build up of mechanical tolerances of the large number of pieces between the focal plane of the sensor array and the camera front plate, the focus distance between the lens and the FPA can vary from camera to camera. The optical location of the focal plane for the KTS family is approximately 17.1 mm behind the mounting plate with a tolerance of ± 1 mm. These factors combine to make the lens markings useless or misleading unless a means of trimming the focus distance is provided.

3.3.2 C-Mount Lens Adapter

This adapter threads into the M42 threaded hole on the mounting plate and a C-mount lens threads into the 1x32 (M25.4 x 1.26) threaded hole in the adapter. No back focus distance adjustability is provided for this adapter. It is designed to put the lens slightly closer to the focal plane than the C-mount specification of 17.56 mm to ensure that distant objects will achieve focus within their adjustable range. To trim the focus position further, use 1 inch inside diameter shim washers to move the lens further away from the focal plane.

Figure 4. Mechanical drawing of C-mount lens adapter, all dimensions in inches.

4 PRINCIPALS OF OPERATION

4.1 FOCAL PLANE ARRAY OPERATION

The SU320KTS-1.7RT camera uses SUI's SU320AMS-1.7T1 indium gallium arsenide (InGaAs) focal plane array (FPA). This FPA has 320 x 256 pixels on a 25 µm pitch. This FPA consists of an InGaAs photodiode array hybridized to a CMOS readout using indium bump bonds. The photodiode array is a backside illuminated device (where light first passes through the substrate before being absorbed) with typical quantum efficiency (QE) and responsivity shown in Figure 5 and Figure 6, respectively. For visible InGaAs, the substrate is thinned to allow shorter wavelength light to reach the light sensitive region of the photodiode.

Figure 5. Typical quantum efficiency of SUI backside illuminated FPAs.

Figure 6. Typical responsivity of SUI backside illuminated FPAs.

The CMOS readouts are "active pixel" devices in which the photocurrent is amplified and stored in each pixel. A simplified pixel schematic is shown in Figure 7. Each pixel contains a gate modulated (GMOD) input circuit for converting current to voltage with continuously adjustable gain. In this circuit, the photocurrent generates a potential across a load and the potential across the load modulates a current source, which charges an integrating capacitor. The load in this circuit is the impedance of the input transistor M_{LOAD} . The impedance of M_{LOAD} and the bias on the photodiode are determined by the supply voltages BIAS and DSUB. The potential across M_{LOAD} is tied to the gate of the output transistor, M_{MIRROR} . Transistor M_{MIRROR} acts as a current source that charges the integration capacitor. Increasing the voltage at the gate of M_{MIRROR} decreases the current flow so the output circuit acts as a current mirror with gain. The baseline current is determined by the supply GAIN and the voltage across the capacitor by the supply V_{RESET} . The camera internally provides all bias voltages and necessary for operation of the focal plane array.

Figure 7. Simplified pixel schematic.

The camera frame sequence consists of an exposure followed by readout and digitization. During exposure, the integration reset switch is open and the integration capacitor shown in Figure 7 is discharged from its reset voltage by the mirrored photodiode current, converting the signal current to a voltage. At the end of the integration time, the sample reset switch is first momentarily closed to reset the last sampled value and then the sample switch momentarily closed to sample the last integration period's signal voltage. After the signal is sampled, the integration reset switch is closed and held until the start of the next integration period. The exposure may or may not overlap the readout of the last frame depending on the exposure period and the frame rate. Since all pixel's integration reset, sample, and sample reset switches receive the same clock timing, the FPA operates with "snapshot" exposure. This means that all pixels are exposed during the same time.

In order to generate the serial analog video signal that is digitized by the camera, the individual pixel voltages are multiplexed out of the FPA in two stages. First, each row is sequentially connected to an array of column amplifiers via column buses that are shared by all of the pixels in a column. This connection is made through the select switch shown in Figure 7. The outputs of the column amplifiers are then multiplexed to form the video

readout using an analog multiplexer.

In the SU320KTS-1.7RT EIA-170 camera, the maximum frame rate is 71 Hz. When the frame readout is synchronized to the EIA-170 analog video output, the frame rate is 59.9 Hz (see section 5.4.6.6). For any frame rate, the SU320AMS-1.7T1 FPA requires a minimum dead, or non-integration, time between exposures equal to 15 pixel periods, or 2.5 μ s. Therefore, at a 59.9 Hz frame rate, the maximum exposure period is 16.6 ms.

4.2 CAMERA SYSTEM OPERATION

The SU-KTS camera system provides all support functions to the focal plane array necessary to provide the user full access to the performance capabilities of the sensor. The camera is a complete data acquisition system supporting the analog, digital, and power conditioning subsystems needed to flexibly operate the focal plane array with minimal external support. A basic signal flow diagram for the SU-KTS camera system is shown in Figure 8.

Figure 8. Camera system signal flow diagram.

The analog functions of the camera system include the following: creation of DC bias voltages required by the FPA, inverting and applying the required DC offset to the FPA output signal for digitization, and converting the analog output signal to digital format using a 12-bit analog-to-digital converter (ADC).

Once digitized, the digital subsystem of the camera receives the output data and performs the following operations: applies pixel-by-pixel offset and gain correction to the data (selectable), performs a contrast stretching enhancement of the data (selectable), inserts test information (selectable), and passes the data through a video look-up table memory (selectable). The image data is presented by the camera in digital and analog video formats. Digital data is available from the camera in a Camera Link compatible format where the source of the data from along the digital data processing path is selectable. Analog image data is available from the camera in EIA-170 standard analog video format. Image data presented on the analog video output is buffered by the camera's digital subsystem using a dual-port memory to allow independent timing operation of the FPA readout and the EIA-170 video. The digital subsystem of the camera also includes a camera control processor which allows the user to select camera operational modes and monitor the camera status through the Camera Link asynchronous communication channel.

The power conditioning subsystem of the camera converts a single DC input power voltage and efficiently re-regulates it to create the power voltages needed internally by the digital and analog subsystems. The power subsystem also includes an adjustable thermoelectric cooler (TEC) power supply, which is under control of the camera's digital subsystem.

See section 5 for more detailed information on the operation of the various camera functions supported by the SU-KTS.

5 CAMERA FUNCTIONS AND CONTROL SOFTWARE INTERFACE

The SU-KTS camera has a variety of features and modes that can be selected or queried through the control interface. These include autogain, image enhancement, exposure time, frame rate, corrections, trigger modes, and error status. The SU-KTS camera communicates via the serial communication provisions of the Camera Link standard. All camera modes are controlled using a set of ASCII commands sent by the Host to the camera.

5.1 COMMUNICATION PROTOCOL

The SU-KTS camera communicates via the serial communication provisions of the Camera Link standard. This asynchronous serial communication is performed using 8 data bits, 1 stop bit, no parity, no flow control, and a configurable baud rate. (See Appendix B for the default serial communication baud rate for your particular camera.)

5.2 COMMAND FORMAT AND RESPONSE

The following typeface conventions are used when describing the camera command set:

- Text that should be reproduced literally is shown in constant-width type.
- Text that should be replaced by the user is shown in *constant-width italic type*.
- Optional text is enclosed in square brackets ([]).
- Comments are preceded by a double dash (--).
- Special operating or cautionary remarks are prefaced by Note: and italicized in the normal font. WARNING notes are in boldface.

When commanding the camera the following rules apply:

- Command input is not case sensitive, upper and lowercase characters are accepted by the camera.
- A carriage return <CR> ends each command.
- All commands and arguments should be separated by white space.
- Extra arguments entered on the command line will be ignored.
- The camera supports several echo modes. The camera can echo the received character back to the user. Alternatively, the echo mode can be configured so that every character received by the camera is echoed using a user-specified character, such as an asterisk. Finally, echo can be disabled, resulting in no output of an echo line.

SUI, Goodrich Corporation

- The return value line output is command dependent. Some commands, such as query commands, will have a return value and so this line will be output. Other commands have no return value and so no return value line will be output.
- Upon successful execution of a command, the processed command response line contains the command and any valid arguments provided. Since extra invalid arguments can be entered on the command line, the processed command response may differ from the command line input (and echo line). Upon unsuccessful execution of a command, the processed command response line contains all arguments entered on the command line. The processed command response line output can be suppressed by setting the response mode to "brief", and can be enabled by setting the response mode to "verbose". Note: The processed command and any arguments returned will be separated by a single space, and will be capitalized regardless of the format in which they were originally entered on the command line.
- Upon successful execution of the command, the command execution outputs the characters: "OK". If the command failed or is invalid, the output is "ERROR". The command execution result is always output.
- After the command execution result is returned, the camera will return the command prompt character ">." Reception of the command prompt character by the Host is an indication that the camera is ready to receive the next command.

Table 2 summarizes the camera's return line formats and the conditions under which the lines are returned.

Line Format	Line Description	Conditions
COMMAND [ARGUMENTS] <cr></cr>	Echo	Returned if configured with echo enabled. Shown format is for echo of received characters. May also be configured for return of user specified character.
[return value] <cr></cr>	Return Value	Returned if issued command results in a return value.
COMMAND [VALID ARGS] <cr></cr>	Processed Command Response	Returned if configured for verbose response mode.
RESULT <cr></cr>	Command Execution Result	Always returned.
>	Command Prompt	Always returned.

Table 2. Line format of camera command return strings.

5.3 STARTUP MESSAGING

Reboot of the camera occurs when power to the camera is cycled or the REBOOT command is issued through the command interface (see section 5.4.14.4). On reboot, the camera transmits a startup banner to the host. The SU-KTS startup banner has the following format:

Initializing Camera ... KTS Camera Sensors Unlimited, Inc. Software Version x Memory Map Version y Hardware Version z

Note: The x, y, and z will be replaced with your actual version. Once the command prompt character ">" has been received by the Host, the camera is ready to receive a command.

5.4 COMMAND SET

A detailed explanation of each command is presented in the following format:

Description	Describes the behavior of the command and other pertinent information.
Setting Type	Specifies if the command's value is a global setting, operational setting, or neither.
Command	Command syntax.
Parameters	Lists the parameters taken by the command as listed in the syntax above.
Туре	Specifies the expected type of the parameter.
Range	Specifies the valid range of the parameter.
Return Values	Lists the values returned by the command.
Туре	Specifies the type of the parameter being returned.
Range	Specifies the range of the parameter.
Example	Provides a programming example, showing the syntax of the command, parameters, and return values. For brevity these examples do not include echo, processed command response, command execution result, or command prompt.

5.4.1 Configuration Commands

The camera's three distinct memory spaces, shown in Figure 9, are used to manage the camera's configuration. There are two non-volatile memory spaces, one that holds the "User Configuration" and another that holds the "Factory Configuration." The User Configuration can be altered by the user to customize camera operation. **The Factory Configuration, programmed at time of manufacture, can not be altered by the user.** This configuration is provided to restore the camera to its default configuration, if needed. A single volatile memory space used to hold the "Current Session Configuration." Each of the memory space contains a copy of the global settings and one or more operational settings. A global setting is a collection of parameters that apply to the global settings.) An operational setting is a collection of parameters that affect the camera's sensitivity. (See Table 4 for a list of user configurable operational settings.)

Figure 9. Camera memory layout.

The Factory Configuration is used to restore the User Configuration to its factory default settings by issuing the CONFIG:RESET command. See Appendix B for the values of the

Factory Configuration global and operational parameters of the camera associated with this manual.

Both the User and Factory Configurations contain one global setting and multiple operational settings. The User Configuration is loaded into the Current Session Configuration upon camera power-up. The User Configuration can be modified by issuing the CONFIG: SAVE command, which causes the global setting in the Current Session to be written back to the User Configuration, overwriting the previous global setting. Issuing the OPR: SAVE command results in the creation of a new operational slot in the User Configuration. The present state of the operational setting in the Current Session Configuration is saved to this newly created operational slot. Issuing the OPR: UPDATE command causes the operational settings in the Current Session Configuration to be written back to the User Configuration, overwriting the previous settings for that particular operational slot.

Baud Rate
Echo Mode
Echo Character
Response Mode
Gain Correction
Offset Correction
Pixel Correction
Global Corrected Offset
Digital Output Mode
Digital Data Source
Enhancement Frames to Average
Enhancement Contrast Factor
Enhancement Minimum Gain Divider
Enhancement Ignore Saturated Pixel State
Enhancement State
AGC State
AGC Top Threshold
AGC Bottom Threshold
AGC Low Operational Setting
AGC High Operational Setting
Digital Gain
Scan State
Over-Scan State
Thermoelectric Cooler State
Test Pattern
Frame Stamp
Trigger Mode
Trigger Source
Trigger Polarity
Trigger Delay
Video LUT
Video Double Buffer Mode State
Synchronize Scan to Video State
Startup Operational Slot
LED State
ADC State
DAC State

Table 3. User configurable global settings.

The Current Session Configuration provides space to hold one global setting and one operational setting. Different operational settings can be loaded into the Current Session Configuration with the OPR command. Once the global and operational settings are loaded they can be modified by issuing commands to the camera. Changes to the global and operational settings will not persist between camera power cycles unless they are

saved to User Configuration non-volatile memory space using the CONFIG:SAVE and OPR:SAVE or OPR:UPDATE commands.

Exposure Period	
Frame Period	
Video 2X Zoom State	
Video Buffer Read Row	
Video Buffer Read Column	

Table 4. User configurable operational settings.

5.4.1.1 Restore Factory Configuration

Description Restores the factory defaults settings. The User Configuration memory space is erased. Next, the Factory Configuration is copied to the User Configuration memory space. Finally, the Current Session Configuration is reloaded from the User Configuration. All modifications made by the user will be lost. See Appendix B for documentation of the Factory Configuration global and operational parameter values for your camera model.

Setting Type	N/A
Command	CONFIG:RESET
Parameters	none
Return Values	none
Example	CONFIG:RESET

5.4.1.2 Save Global Configuration

Description Overwrites the global configuration in the User Configuration space with the Current Session's global settings.

Setting Type	N/A
Command	CONFIG:SAVE
Parameters	none
Return Values	none
Example	CONFIG:SAVE

5.4.1.3 Load Operational Configuration

Description Loads the operational settings for the specified operational slot. An error will occur if an *opr_number* outside of the specified range is used.

Setting Type	N/A	
Command	OPR	opr_number

SUI, Goodrich Corporation

Imaging Beyond Visible[™]

Parameters	Opr_number
Туре	unsigned integer
Range	0 to 19 (limited by the number of operational settings that currently exist)
Return Values	none
Example	OPR 5

5.4.1.4 Get Current Operational Configuration Number

Description	Returns the current operational slot number that is loaded.
Setting Type	N/A
Command	OPR?
Parameters	none
Return Values	opr_number
Туре	unsigned integer
Range	0 to 19
Example	OPR? query command
	5 return value

5.4.1.5 Get Total Number of Operational Configurations

Description	Returns the number of operational settings currently present in the User Configuration memory.		
Setting Type	N/A		
Command	OPR:MAX?		
Parameters	none		
Return Values	number		
Туре	unsigned integer		
Range	1 to 20		
Example	OPR:MAX?	query command	
	8	currently OPR 0-7 exist	

5.4.1.6 Set Startup Operational Configuration

Description	Sets the operational slot number that will be loaded on rebo			
	of the camera. Note: Since this is a global setting, a			
	CONFIG:SAVE command must subsequently be issued to			
	cause any changes in this value to be saved to the User			
	Configuration memory.			
Catting Trues				

Setting Type Global Command OPR:START opr_number

SUI, Goodrich Corporation

Imaging Beyond Visible[™]

Parameters	Opr_number
Туре	unsigned integer
Range	0 to 19 (limited by the number of operational settings that currently exist)
Return Values	none
Example	OPR:START 5

5.4.1.7 Get Startup Operational Configuration

Description	Returns the operat reboot of the camer	ional slot ⁻ a.	number	that	will	be	loaded	on
Setting Type	Global							
Command	OPR:START?							
Parameters	none							
Return Values	0pr_number							
Туре	unsigned integer							
Range	1 to 19							
Example	OPR:START?	que	ry com	nand				
	5	ret	urn val	lue				

5.4.1.8 Create New Operational Configuration

Description Takes the Current Session operational settings and saves them to User Configuration memory and assigns a new operational slot number. A maximum of 20 operational slots is allowed and the operational slot numbers are assigned sequentially. The new operational slot number will be returned to the host. Note: When a new operational configuration is created, any factory correction table associated with the existing operational configuration will not be copied to the new operational configuration slot. Corrections, therefore, must be disabled when using the newly created configuration slot for meaningful data to be produced.

Setting Type	N/A
Command	OPR:SAVE
Parameters	none
Return Values	opr_number
Туре	unsigned integer
Range	0 to 19

SUI, Goodrich Corporation	Imaging Beyond Visible™
---------------------------	-------------------------

Example	OPR:SAVE	 command
	8	 return value

5.4.1.9 Update Existing Operational Configuration

Description	Updates the operational configuration in the User Configuration memory with the operational settings from the Current Session Configuration.
Setting Type	N/A
Command	OPR:UPDATE
Parameters	none
Return Values	none
Example	OPR:UPDATE

5.4.1.10 Delete Last Operational Configuration

Description Deletes the last, or highest slot number, operational configuration from the User Configuration memory. This operation will only delete operational configurations created by the user, and will return an error if executed when only factory operational configurations exist. If the Current Session Configuration is the last operational configuration when this command is issued, a subsequent query of the current operational configuration number will return the deleted operational configuration, but a command to load the deleted operational number will error. WARNING: If the startup operational configuration is no longer specified.

Setting Type	N/A
Command	OPR:DEL
Parameters	none
Return Values	none
Example	OPR:DEL

5.4.1.11 Delete All Operational Configurations

Description Deletes all operational configurations created by the user from the User Configuration memory. This operation will return an error if executed when only factory operational configurations exist. If the Current Session Configuration is deleted from the user configuration memory, a subsequent query of the current operational configuration number will return the deleted operational configuration number, since it is still the Current Session Configuration, but a command to load the deleted

SUI, Goodrich Corporation	Imaging Beyond Visible [™]	SUI KTS Camera
	operational number will return an error. startup operational configuration is o operation is no longer specified.	WARNING: If the deleted, the camera
Setting Type	N/A	
Command	OPR:DEL:ALL	
Parameters	none	
Return Values	none	
Example	OPR:DEL:ALL	

5.4.2 Serial Communication Interface Commands

Baud rate configuration in the volatile memory space is managed with two discrete variables. The first variable, current baud rate, represents the baud rate at which the camera is currently communicating. The second variable, future baud rate, holds the baud rate value that will be stored to non-volatile memory when a global configuration save (CONFIG: SAVE) is executed. **Changing the current baud rate will require the host to change baud rates for communication to continue**. Changing the future baud rate and saving it to non-volatile memory allows for the new baud rate to be effective upon reboot of the camera.

5.4.2.1 Set Current Baud Rate

Description	This command updates the current baud rate variable. The baud rate that the camera communicates at will change immediately. WARNING: Changing the current baud rate will require the host to change baud rates for communication to continue.
Setting Type	Global
Command	BAUD:CURRENT baud_rate
Parameters	baud_rate

Type unsigned integer

Imaging Beyond Visible[™]

Range

300
1200
2400
4800
9600
14400
19200
28800
31250
38400
57600
115200

Return Values	none	
Example	BAUD:CURRENT	57600

5.4.2.2 Get Current Baud Rate

Description	Returns the current baud rate.
Setting Type	Global
Command	BAUD:CURRENT?
Parameters	none
Return Values	baud_rate
Туре	unsigned integer

Range

300
1200
2400
4800
9600
14400
19200
28800
31250
38400
57600
115200

Example	Examp	le
---------	-------	----

BAUD:CURRENT?	query command
57600	return value

5.4.2.3 Set Future Baud Rate

Description Updates the future baud rate variable. WARNING: A CONFIG: SAVE command must be executed after this command for a change in the future baud rate value to be saved and used on the next camera power-up or reboot.

Setting Type	Global
Command	BAUD:FUTURE baud_rate
Parameters	baud_rate
Туре	unsigned integer

Range

300
1200
2400
4800
9600
14400
19200
28800
31250
38400
57600
115200

Return Values none Example BAUD

BAUD:FUTURE 28800

5.4.2.4 Get Future Baud Rate

Description	Returns the value stored in the future baud rate variable.
Setting Type	Global
Command	BAUD:FUTURE?
Parameters	none
Return Values	baud_rate
Туре	unsigned integer
Imaging Beyond Visible[™]

Range

300	
1200	
2400	
4800	
9600	
14400	
19200	
28800	
31250	
38400	
57600	
115200	

Example BAUD:FUTURE? -- query command 28800 -- return value

5.4.2.5 Set Echo Mode

- Description Sets the echo mode for serial communications. In mode 0 echo is disabled. In mode 1 echo is enabled and any character received on the serial port is immediately echoed back. An exception to the echo of the received character with mode 1 enabled is when a backspace character is received while the receive buffer is empty. In mode 2 echo is enabled but instead of echoing back the character received a user defined character is echoed. Echo mode 1 provides for the most robust communication, allowing the host to verify that each character sent to the camera was properly received. Echo mode 2 allows the host to verify that the camera received the correct number of characters, but does not provide a way to verify that characters where not corrupted during transmission.
- Setting Type Global
- Command ECHO:MODE mode
- Parameters mode

Type unsigned integer

Range

0	Echo off
1	Echo received character
2	Echo user defined character

Return Values none

Example ECHO:MODE 1

Imaging Beyond Visible[™]

5.4.2.6 Get Echo Mode

Description	Returns the current echo mode setting.
Setting Type	Global
Command	ECHO:MODE?
Parameters	none
Return Values	mode
Туре	unsigned integer
Range	

0	Echo off
1	Echo received character
2	Echo user defined character

Example	ECHO:MODE?	 query command
	1	 return value

5.4.2.7 Set Echo Character

Description Sets the echo character returned when in echo mode 2. The character is set by entering the ASCII code of the desired character.

Setting Type	Global
Command	ECHO:CHAR value
Parameters	value
Туре	unsigned integer
Range	0 to 255
Return Values	none
Example	ECHO:CHAR 35 ASCII CODE 35 is #

5.4.2.8 Get Echo Character

Description	Returns the echo ch	aracter used for echo mode 2.
Setting Type	Global	
Command	ECHO:CHAR?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 255	
Example	ECHO:CHAR?	query command
	35	return value

5.4.2.9 Set Response Mode

Description The camera supports two response modes, brief and verbose. In verbose response mode the processed command response line discussed in section 5.2 is output. In brief response mode the processed command response line is not output.

Command RESPONSE mode	Command	RESPONSE	mode
-----------------------	---------	----------	------

Parameters mode

Type string

Range

BRIEFBrief response modeVERBOSEVerbose response mode

Return Values	none
Fxample	RESPONSE

5.4.2.10 Get Response Mode

Description	Returns the current response mode.		
Setting Type	Global		
Command	RESPON	SE?	
Parameters	none		
Return Values	mode		
Туре	string		
Range			
		BRIEF	Brief response mode
		VERBOSE	Verbose response mode
Example	RESPON	SE?	query command
	VERBOS	E	return value

VERBOSE

5.4.3 Correction Commands

The factory operational configuration slots support two-point correction tables that can be used to compensate for the dark signal and gain photoresponse non-uniformity of the FPA. Defective FPA pixels can also be substituted with the last good pixel value. The correction table coefficients are applied to create a corrected pixel value *PIXCORR* according to the following relation:

$$PIXCORR = ((PIXIN - CORROFF) \times \frac{CORRGAIN}{2048}) + GLOBALCORROFF$$

where *PIXIN* is the raw pixel value, *CORROFF* is the offset correction value, *CORRGAIN* is the gain correction value, and *GLOBALCORROFF* is the global corrected offset value.

CORROFF and *CORRGAIN* are unique for each FPA pixel and operational configuration slot. *GLOBALCORROFF* is applied to every pixel of the frame. The correction commands allow the offset, gain, and pixel corrections to be independently enabled or disabled. If offset correction is disabled, *CORROFF* and *GLOBALCORROFF* are 0. If gain correction is disabled, *CORROFF* and *GLOBALCORROFF* are 0. If gain correction is disabled.

Note: If either gain or offset correction is applied to the raw pixel data and a subsequent digital fixed gain of 1X is used, some pixel values may not saturate at the full 12-bit resolution count value of 4,095. If a subsequent fixed digital of 2X or higher is used, however, all pixels will saturate at 4,095.

The pixel correction function uses a bad pixel map that applies to all operational configuration slots. The gain and offset correction coefficients are unique for each operational setting.

5.4.3.1 Set Gain Correction State

Description	Sate the state of the gain correction. Gain correction
Description	compensates for pixel-to-pixel photoresponse non-uniformity.
Setting Type	Global
Command	CORR:GAIN state
Parameters	state
Туре	string
Range	
	ON Enables Gain Corrections
	OF'F' Disables Gain Corrections
Return Values	none
Example	CORR:GAIN ON
Get Gain Corre	ection State
Description	Returns the state of the gain correction.
Setting Type	Global
Command	CORR:GAIN?
Parameters	none
Return Values	state
Туре	string
Range	
J	ON Gain Correction Enabled
	OFF Gain Correction Disabled
Example	CORR:GAIN? query command
	ON return value

5.4.3.2

Imaging Beyond Visible[™]

5.4.3.3 Set Offset Correction State

Description	Sets the compens	state ates fo	of the r dark cu	offset Irrent s	correction ignal non-ບ	. Offs Iniformi	set ty.	correction
Setting Type	Global							
Command	CORR:01	FFSET	state					
Parameters	state							
Туре	string							
Range								
		ON	Enables	5 Offset	Correction	าร		
		OFF	Disable	s Offse [.]	t Correctior	ns		

Return Values	none	
Example	CORR:OFFSET	ON

5.4.3.4 Get Offset Correction State

Description	Returns th	Returns the state of the offset correction.					
Setting Type	Global						
Command	CORR:OF	CORR:OFFSET?					
Parameters	none						
Return Values	state						
Туре	string						
Range							
		ON	Offset Correction Enabled				
		OFF	Offset Correction Disabled				
Example	CORR:OF	FSET	? query command				
	ON		return value				

5.4.3.5 Set Pixel Correction State

DescriptionSets the state of the pixel correction. Pixel correction replaces
pixels that do not pass focal plane array performance
specifications with the last, non-replaced pixel value.Setting TypeGlobalCommandCORR:PIXEL stateParametersstate

Type string

Range

ON	Enables Pixel Corrections
OFF	Disables Pixel Corrections

Return Values	none	
Example	CORR:PIXEL	ON

Imaging Beyond Visible[™]

5.4.3.6 Get Pixel Correction State

Description	Returns the state of the pixel correction.					
Setting Type	Global					
Command	CORR:PIXEL?					
Parameters	none					
Return Values	state					
Туре	string					
Range						
	ON	Pixel Correction Enabled				
	OFF	Pixel Correction Disabled				
Example	CORR:PIXEL?	query command				

-- return value

5.4.3.7 Set Global Corrected Offset Value

ON

Description Sets the global offset value. Global offset is a fixed value that is added to each pixel in the image after all other corrections have been applied if offset correction is enabled. The global offset can be disabled by setting its value to zero.

Setting Type	Global	
Command	CORR:OFFSET:GLOBAL	value
Parameters	value	
Туре	unsigned integer	
Range	0 to 4095	
Return Values	none	
Example	CORR:OFFSET:GLOBAL	100

5.4.3.8 Get Global Corrected Offset Value

Description	Returns the global offset va	lue.					
Setting Type	Global						
Command	CORR:OFFSET:GLOBAL?						
Parameters	none						
Return Values	value						
Туре	unsigned integer						
Range	0 to 4095						
Example	CORR:OFFSET:GLOBAL?		query	command			
	100		returr	n value			

5.4.4 Image Enhancement and Automatic Gain Control (AGC) Commands

The Automatic Gain Control (AGC) algorithm monitors frame statistics at rate of 10 times per second and adjusts the operational configuration (OPR number) to achieve the best camera sensitivity settings for the given imaging scene.

The parameters of Table 5 are used to tailor the AGC algorithm:

Parameter	Description	Serial Command
AGC Top Threshold	If the frame average value exceeds the top threshold value the algorithm attempts to reduce the camera sensitivity.	AGC:THRESH:TOP
AGC Bottom Threshold	If the frame average value falls below the bottom threshold value the algorithm attempts to increase the camera sensitivity	AGC:THRESH:BOT
AGC Low Operational Bound	Sets the lowest operational configuration available for use by the algorithm.	AGC:OPR:LOW
AGC High Operational Bound	Sets the highest operational configuration available for use by the algorithm.	AGC:OPR:HIGH
Frame Average Weight	Sets the weight by which the most recent frame's statistics are used to affect the reported frame average. The frame average is an exponentially weighted moving average. Note: This parameter also affects the calculation of the frame width parameter used by the enhancement algorithm.	ENH:AVG
Saturated Pixels	Allows omission of saturated pixel values from the frame average and frame width calculations.	ENH:SAT

Table 5. AGC algorithm configurable parameters.

The AGC algorithm is depicted in Figure 10 and its operation is described in the following paragraphs.

If the frame average is between the AGC Top Threshold and AGC Bottom Threshold (inclusive) no changes are made to the operational setting.

If the frame average is greater than the AGC Top Threshold the algorithm attempts to reduce the camera's sensitivity by changing to a lower operational setting. If the current

operational setting number is greater than the AGC Low Operational Bound then the algorithm decreases the operational setting number by one. If the current operational setting number is equal to the AGC Low Operational Bound, then the camera is at the least sensitive setting allowed by the algorithm parameters, and no change will be made.

If the frame average is less than the AGC Bottom Threshold the algorithm attempts to increase the camera's sensitivity by changing to a higher operational setting. If the current operational setting number is less than the AGC High Operational Bound then the algorithm increases the operational setting number by one. If the current operational setting number is equal to the AGC High Operational Bound then the camera is at the most sensitive setting allowed by the algorithm parameters, and no change will be made.

Figure 10. Automatic gain control algorithm flow chart.

For the AGC algorithm to operate properly the following conditions must be met:

 The operational configurations used by the AGC algorithm should be in order of increasing sensitivity. The AGC High OPR Bound must have the highest sensitivity and the AGC Low OPR Bound must have the lowest sensitivity. All operational settings in between the high and low bounds must fall within these sensitivity levels and be arranged in increasing sensitivity order.

Imaging Beyond Visible[™]

- The AGC algorithm performs best if the relative sensitivity levels of the operational settings used are evenly spaced. For example, if OPR 1 is twice as sensitive as OPR 0, it should be half as sensitive as OPR 2.
- The OPR sensitivity spacing and the AGC threshold bounds should be selected so that the algorithm can find a solution for all frame averages. For example, if the OPR sensitivity spacing is configured to be 4X and the threshold values are set to 1,000 and 3,000 counts the AGC algorithm will fail when the frame average is 800 counts. The algorithm will attempt to increase the camera sensitivity by increasing to the next OPR setting which is four times more sensitive, resulting in a frame average of 3,200 counts, which is now above the upper threshold level. This scenario will cause the AGC algorithm to oscillate between two OPR setting, neither of which will satisfy the algorithm requirements with the given parameters. To remedy this problem the OPR sensitivity spacing can be reduced to 2X, or the threshold values could be changed to 750 and 3,250 counts, or some combination of the two. To assure that the AGC algorithm does not oscillate the sensitivity spacing should be less than the result of the upper threshold divided by the lower threshold.

The factory AGC thresholds are typically centered around 2048, the middle of the pixel digital value range. (See Appendix B for the factory configuration of these parameters for your particular camera.) These thresholds may be adjusted from their factory configuration to better match a particular scene's content and desired AGC operation. For example, if night imaging in an urban environment, areas of saturated pixels may result around manmade light sources such as street lamps and automobile headlights with the factory default AGC thresholds. However, lowering the Top and Bottom AGC thresholds to 1000 and 500, for example, would result in the camera's AGC algorithm maintaining a frame average in the bottom quarter of the range, permitting more bright scene content to be imaged without saturation.

Note: That the when AGC is enabled operational configurations can be loaded using the OPR command. However, the AGC algorithm will override the user set operation configuration if the frame average falls outside of the AGC thresholds. The OPR? and FRAME: AVG? commands can be used to monitor operation of the AGC algorithm.

The image enhancement algorithm of the SU-KTS also monitors the image frame statistics and, if enabled, performs a digital offset and gain computation on each pixel of the frame where the gain and offset coefficients for each frame are computed using previous frame statistics and a user selected parameter.

The frame statistics used to determine the enhancement gain and offset coefficients are the frame average value which is also used by the AGC algorithm and the frame data "width." The data width of the current frame is defined as the average absolute value of the difference between the current frame's pixel values and the last frame(s) average. With this definition, the width parameter can be used as a metric of the contrast of the frame. With the previous frame(s) average value *AVG* and width *WID*, both of which are computed according to the average parameter configured through the ENH:AVG command, enhancement offset coefficient *EO* and enhancement gain coefficient *EG* are calculated for each frame according to the following relations:

$$EO = MAX[0, (AVG - (\frac{CF}{2^{12}} \times WID))]$$

$$EG = \frac{(2^{12} - 1)}{MAX[(MIN[2^{12}, (AVG + (\frac{CF}{2^{12}} \times WID))] - EO), MINGAINDIVIDER]} = \frac{(2^{12} - 1)}{GAINDIVIDER}$$

where CF is the enhancement contrast factor parameter set through the ENH:CF command. The minimum allowed value for *GAINDIVIDER*, *MINGAINDIVIDER*, is set through the ENH:DIV command. The smaller the *GAINDIVIDER* value allowed, the larger the maximum *EG* gain that can be applied during enhancement.

If enhancement is enabled, these coefficients are applied to each pixel value of the frame *PIXIN* to produce the enhanced pixel value *PIXENH* according to the following relation:

$$PIXENH = (PIXIN - EO) \times EG$$

with PIXENH bound to [0, 4095].

By applying this enhancement algorithm, the pixel data will be linearly stretched over the available pixel bit depth resulting in a higher contrast scene for display. The amount that the data is stretched is affected by the *CF* parameter, with a smaller *CF* value creating a larger *EG* gain but possibly causing a larger number of pixel values to be clipped by the [0, 4095] bounds. In Figure 11 the effect of applying this enhancement algorithm on an example pixel data histogram is shown.

Figure 11. Example of enhancement algorithm effect on frame histogram.

5.4.4.1 Set Enhancement/AGC Frame Average and Width Weight

Description Sets the weight by which the most recent frame's statistics are used to affect the reported frame average and width. The current frame average, *CURRENTAVG*, is computed as follows

 $CURRENTAVG = LASTAVG - \frac{(LASTAVG - NEWAVG)}{2^{N}}$

where *LASTAVG* is the last reported frame average value, *NEWAVG* is the average pixel value of the most recently acquired frame, and *N* is the value set by this command. Note: If N = 0, the currently reported average is the average pixel value of the most recently acquired frame. This setting will affect the value returned by the *FRAME*: AVG? command. Note: If N = 0, the current reported average is the average pixel value of the most recently acquired frame. If N > 0 and AGC is enabled, the stability of the AGC control loop may be affected. If the AGC loop does not converge to a single operational setting when imaging a fixed scene, reduce N until the control loop stabilizes.

Setting Type	Global					
Command	ENH:AVG value					
Parameters	value					
Туре	unsigned integer					
Range	0 to 11					
Return Values	none					
Example	ENH:AVG 0					

5.4.4.2 Get Enhancement/AGC Frame Average Weight

Description	Returns the weight are used to affect th	by whicł e report	h the ed fra	most recent frame's statistics ame average and width.
Setting Type	Global			
Command	ENH: AVG?			
Parameters	none			
Return Values	value			
Туре	unsigned integer			
Range	0 to 11			
Example	ENH:AVG?	qu	ery	command
	0	re	spor	ise

5.4.4.3 Set Enhancement Contrast Factor

Description	Sets the contrast algorithm.	factor	used	by	the	image	enhancement
Setting Type	Global						
Command	ENH:CF value						
Parameters	value						
Туре	unsigned integer						
Range	0 to 65535						
Return Values	none						
Example	ENH:CF 8190						

5.4.4.4 Get Enhancement Contrast Factor

Description	Returns the contrast	fact	or value.	
Setting Type	Global			
Command	ENH:CF?			
Parameters	none			
Return Values	value			
Туре	unsigned integer			
Range	0 to 65535			
Example	ENH:CF?		query	command
	8190		respor	nse

5.4.4.5 Set Enhancement Minimum Gain Divider

Description	Sets the minimum gain divider value, <i>MINGAINDIVIDER</i> , used in the computation of the enhancement gain coefficient.
Setting Type	Global
Command	ENH:DIV value
Parameters	value
Туре	unsigned integer
Range	0 to 16383
Return Values	none
Example	ENH:DIV 100

5.4.4.6 Get Enhancement Minimum Gain Divider

Description	Returns the minimum gain divider value, MINGAINDIVIDER,
	used in the computation of the enhancement gain coefficient.
Setting Type	Global

Imaging Beyond Visible[™]

Command	ENH:DIV?		
Parameters	none		
Return Values	value		
Туре	unsigned integer		
Range	0 to 16383		
Example	ENH:DIV?	 query	command
	100	 respor	ıse

5.4.4.7 Set Enhancement/AGC Saturated Pixel State

Description Sets saturated pixel inclusion or omission for the purpose of calculating image statistics used by the image enhancement and automatic gain control algorithms. This setting will impact the value returned by the FRAME:AVG? command.

Setting Type	Global
Command	ENH:SAT state
Parameters	state
Туре	string
Range	
	ON Sat

ON	Saturated Pixels Omitted
OFF	Saturated Pixels Included

Return Values	none	
Example	ENH:SAT	ON

5.4.4.8 Get Enhancement/AGC Saturated Pixel State

Description	Returns if saturated pixels are omitted from image statistics		
Setting Type	Global		
Command	ENH:SA	T?	
Parameters	none		
Return Values	state		
Туре	string		
Range			
		ON	Saturated Pixels Omitted
		OFF	Saturated Pixels Included
Example	ENH:SA	Т?	query command
	ON		return value

5.4.4.9 Set Enhancement State

Description	Sets the state of the image enhancement algorithm.		
Setting Type	Global		
Command	ENH: ENABLE state		
Parameters	state		
Туре	string		
Range			
		ON	Enables Enhancements
		OFF	Disables Enhancements
Return Values	none		
Example	ENH:EN	ABLE	ON

5.4.4.10 Get Enhancement State

Description	Returns	the stat	te of the image enhancement algorithm
Setting Type	Global		
Command	ENH:EN	ABLE?	
Parameters	none		
Return Values	state		
Туре	string		
Range			
		ON	Enhancements Enabled
		OFF	Enhancements Disabled

	01.1.	
Example	ENH: ENABLE?	query command
	ON	return value

5.4.4.11 Set AGC State

Description	Sets the state of the AGC algorithm.
Setting Type	Global
Command	AGC:ENABLE state
Parameters	state
Туре	string

Range

ON	Enables AGC
OFF	Disables AGC

Return Values none Example AGC:ENABLE ON

5.4.4.12 Get AGC State

Description	Returns the state of the AGC algorithm.			
Setting Type	Global			
Command	AGC:ENABLE	AGC: ENABLE?		
Parameters	none	none		
Return Values	state			
Туре	string			
Range				
	ON	AGC enabled		
	OFF	AGC disabled		
Example	AGC:ENABLE	? query command		
	ON	return value		

5.4.4.13 Set AGC Top Threshold

Description Sets the top threshold in digital counts for the AGC algorithm. When the frame average exceeds this threshold the algorithm attempts to decrease the camera sensitivity by switching to a lower operational setting. The AGC top threshold should be set to a value greater than the bottom threshold.

Setting Type	Global	
Command	AGC:THRESH:TOP	value
Parameters	value	
Туре	unsigned integer	
Range	0 to 4095	
Return Values	none	
Example	AGC:THRESH:TOP	3000

5.4.4.14 Get AGC Top Threshold

Description	Returns the top threshold value in digital counts for the AGC algorithm.
Setting Type	Global
Command	AGC:THRESH:TOP?
Parameters	none
Return Values	value
Туре	unsigned integer
Range	0 to 4095
Example	AGC:THRESH:TOP? query command
	3000 return value

5.4.4.15 Set AGC Bottom Threshold

Description	Sets the bottom threshold in digital counts for the AGC algorithm. When the frame average falls below this threshold the algorithm attempts to increase the camera sensitivity by switching to a higher operational setting. The AGC bottom threshold should be set to a value less than the top threshold.
Setting Type	Global
Command	AGC:THRESH:BOT value
Parameters	value
Туре	unsigned integer
Range	0 to 4095
Return Values	none
Example	AGC:THRESH:BOT 1000

5.4.4.16 Get AGC Bottom Threshold

Description	Returns the bottom t AGC algorithm.	hreshold	value	in	digital	counts	for	the
Setting Type	Global							
Command	AGC:THRESH:BOT?							
Parameters	none							
Return Values	value							
Туре	unsigned integer							
Range	0 to 4095							
Example	AGC:THRESH:BOT?-	- query	y com	ıma	nd			
	1000 -	- retui	rn va	lu	.e			

5.4.4.17 Set AGC Low Operational Setting

Description	This command used in conjunction with the set AGC high operational setting defines the range of operational settings that are available for use by the AGC algorithm. See section 5.4.4 for discussion of selecting this parameter value.
Setting Type	Global
Command	AGC:OPR:LOW opr_setting
Parameters	opr_setting
Туре	unsigned integer
Range	0 to 20, limited by number of operational settings than currently exist.
Return Values	none
Example	AGC:OPR:LOW 0

5.4.4.18 Get AGC Low Operational Setting

Description	Returns the lowest of AGC algorithm.	operational setting available for use by the
Setting Type	Global	
Command	AGC:OPR:LOW?	
Parameters	none	
Return Values	opr_setting	
Туре	unsigned integer	
Range	0 to 20	
Example	AGC:OPR:LOW?	query command
	0	return value

5.4.4.19 Set AGC High Operational Setting

Description	This command used in conjunction with the set AGC low operational setting defines the range of operational settings
	that are available for use by the AGC algorithm. See section 5.4.4 for discussion of selecting this parameter value.

Setting Type	Global
Command	AGC:OPR:HIGH opr_setting
Parameters	opr_setting
Туре	unsigned integer
Range	0 to 20, limited by number of operational settings than currently exist.
Return Values	none
Example	AGC:OPR:HIGH 7

5.4.4.20 Get AGC High Operational Setting

DescriptionReturns the highest operational setting available for use by the
AGC algorithm.Setting TypeGlobalCommandAGC:OPR:HIGH?ParametersnoneReturn Valuesopr_setting

Typeunsigned integerRange0 to 20ExampleAGC:OPR:HIGH? -- query command7-- return value

5.4.4.21 Get Frame Average

Description	Returns the avera exponentially weigh average, with the r command.	ge pixel value in digital counts. An ted moving average is used to calculate the number of frames set using the ENH:AVG
Setting Type	N/A	
Command	FRAME: AVG?	
Parameters	none	
Return Values	average_value	
Туре	unsigned integer	
Range	0 to 4095	
Example	FRAME: AVG?	query command
	2172	return value

5.4.5 Pixel Clock Commands

The camera electronics are designed to support a variety of focal plane arrays with varying requirements for pixel clock rate. The pixel clock is operated for the supported focal plane array at the maximum pixel clock rate reported through the command interface. The pixel clock period is needed to calculate exposure and frame times.

5.4.5.1 Get Pixel Clock Maximum Rate

Description	Returns the FPA pix	el clock rate in Hertz.
Setting Type	Global	
Command	PIXCLK:MAX?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 4294967295	
Example	PIXCLK:MAX?	query command
	6104900	return value

5.4.6 Frame and Exposure Control Commands

The internally timed exposure period is given by the following relation:

EXPPERIOD = *EXPCYCLES* × *PIXELPERIOD*

where *EXPCYCLES* is the exposure period set using the EXP command. See section 5.4.5 for a discussion on determining the pixel clock period.

The internally timed frame period is given by

FRAMEPERIOD = *FRAMECYCLES* × *PIXELPERIOD*

where *FRAMEPERIOD* is the frame period set using the FRAME: PERIOD command. The maximum exposure time for a particular frame period is equal to the frame period less the FPA required minimum dead, or non-integration, time of 15 pixel periods, or 2.5 µs.

Note: When scanning is enabled the exposure period and frame period specified must be compatible with each other or a command error will occur. Therefore, knowledge of the current exposure and frame periods is required and the order in which the exposure and frame period are changed is crucial for success. Going from a short exposure and frame period to a longer exposure and frame period requires first increasing the frame period and then the exposure period, while going in the opposite direction requires shortening the exposure period first. To avoid issues regarding what setting is updated first, scanning can be disabled. Once scanning is disabled, the exposure and frame periods can be set in any order and then scanning re-enabled. However, exposure and frame periods compatible with each other and the timing requirements of the FPA must be specified otherwise an error will be returned when attempting to enable scanning.

Note: When the camera is set to operate in an externally triggered timing mode or the frame readout is synchronized to the analog video output, the exposure and frame period settings may not apply. (See section 5.4.7 for a description of supported triggered timing modes.)

5.4.6.1 Set Exposure Period

Description	Sets the <i>EXPCYCLES</i> , which controls the exposure time (see equation in section 5.4.6).
Setting Type	Operational
Command	EXP value
Parameters	value
Туре	unsigned integer
Range	1 to 16777214
Return Values	none
Example	EXP 364651

5.4.6.2 Get Exposure Period

Description	Returns the <i>EXPCYCLES</i> , which controls the exposure time (see equation in section 5.4.6).
Setting Type	Operational

Command EXP?

Imaging Beyond Visible[™]

Parameters	none			
Return Values	value			
Туре	unsigned inte	ger		
Range	1 to 1677721	4		
Example	EXP?		query	command
	364651		return	value

5.4.6.3 Set Frame Period

Description	Sets the frame period in units of pixel clock cycles.
Setting Type	Operational
Command	FRAME: PERIOD value
Parameters	value
Туре	unsigned integer
Range	1 to 16777214
Return Values	none
Example	FRAME: PERIOD 366610

5.4.6.4 Get Frame Period

Description	Returns the frame period in units of pixel clock cycles.			
Setting Type	Operational			
Command	FRAME: PERIOD?			
Parameters	none			
Return Values	value			
Туре	unsigned integer			
Range	1 to 16777214			
Example	FRAME:PERIOD?	query command		
	366610	return value		

5.4.6.5 Set Exposure Period with Minimum Frame Period

Description Sets the exposure period in pixel clock cycles and the frame period to the smallest allowed value, creating the highest allowed frame rate for the requested exposure time.

Setting Type	Operational
Command	EXP:MAXRATE value
Parameters	value
Туре	unsigned integer
Range	1 to 16777214

Return Values	none	
Example	EXP:MAXRATE	26348

5.4.6.6 Set State of Synchronization of FPA Readout to Analog Video

Description Sets the state of synchronization of FPA frame readout to the analog video frame rate. If off and not in an external trigger mode that controls the frame timing, the frame period is determined by the value set by the FRAME PERIOD command. If on and in a timing mode where the frame period is being internally timed by the camera, then the FPA readout frame period becomes N video frame or field periods where N is the value of the FPA frame period setting divided by the analog video frame or field period rounded up to next highest integer. The EIA-170 frame period of 33.4 ms is used when in full resolution analog video mode and the field period of 16.7 ms is used when in 2X zoom mode (see section 5.4.10.4). For example, if the value set by the FRAME: PERIOD command is smaller than 33.4 ms, the analog video is in full resolution mode, and the synchronization of FPA readout to analog video is on, then one FPA frame will be readout for every analog video frame. Note: The period set by the FRAME: PERIOD command must still be compatible with the selected exposure time and frame readout period even when FPA readout is synchronized to the analog video for proper camera operation to be guaranteed.

Setting Type	Global
Command	SCAN:VIDSYNC state
Parameters	state
Туре	string
Range	
	ON Enable scap sync to ar

ON	Enable scan sync to analog video
OFF	Disable scan sync to analog video

Return Values	none	
Example	SCAN:VIDSYNC ON	

5.4.6.7 Get State of Synchronization of FPA Readout to Analog Video

Description Returns the state of synchronization of FPA frame readout to the analog video frame rate.

Setting Type	Global
Command	SCAN:VIDSYNC?
Parameters	none

SUI, Goodrich Corporation	Imaging Beyond Visible [™]		eyond Visible [™]	SUI KTS Camera	
Return Values	state				
Туре	string				
Range					
		ON	Sync scan to analog video ena	bled	
		OFF	Sync scan to analog video disa	bled	
Example	SCAN:	VIDSY	NC? query command		
	ON		return value		

5.4.7 Trigger Commands

The user can change the trigger mode via the serial communication ASCII command TRIG:MODE.

When trigger mode 0 is selected, the camera is free-running with the exposure and frame rate internally timed. (See section 5.4.6 for description of commands to control the internally timed exposure and frame period parameters). When in trigger mode 0, the timing sequence of the camera is as shown in Figure 12.

Figure 12. Trigger mode 0 exposure and readout timing sequence.

In trigger modes 1, 2, and 3, an external trigger timing signal is used to control the exposure and readout timing. The external trigger signal can be applied to the camera through the *TRIGGER* SMA connector on the camera's back panel or the Camera Link CC1 signal. The signal source can be selected via the serial communication ASCII command TRIG:SOURCE. The polarity of the trigger sources can be selected via the serial communication ASCII command trigger signal via the serial communication ASCII command TRIG:POL. An additional time delay can be added to trigger signal via the serial communication ASCII command TRIG:DELAY. Trigger delay times discussed in the following paragraphs are values produced when the added trigger delay is 0.

In trigger mode 1, the camera uses the external trigger signal to set the frame rate and internally times the exposure. The exposure time is set by the operational setting chosen

and can be overridden by the user with the EXP command. The available integration times for the Base OPR settings are shown in Appendix B. The camera detects a trigger transition via the currently selected trigger input to initiate exposure (integration). It uses the low to high, if an active high polarity is selected, or the high to low transition, if an active low polarity is selected. The delay between this trigger transition and start of exposure is 5 to 6 pixel periods. (See section 5.4.5 for a discussion on determining the pixel clock period.) The ceiling of the trigger rate for this mode is the maximum frame rate. The timing sequence of the camera for trigger mode 1 is shown in Figure 13.

Figure 13. Trigger mode 1 exposure and readout timing sequence.

In trigger mode 2, the camera uses the external trigger to both externally set the exposure time and the frame rate. During this external triggered mode, the camera waits for a trigger pulse before initiating a scan of the focal plane array. The camera detects a trigger transition via the currently selected trigger input to initiate the start of exposure (integration). It uses the low to high transition, if an active high polarity is selected, or the high to low transition, if an active low polarity is selected. A trigger transition of the opposite polarity ends the exposure. In other words, the active trigger pulse width determines the exposure time and the trigger frequency determines the frame rate. In trigger mode 2, the delay between the trigger transition and start of exposure is 3 to 4 pixel clock periods. The timing sequence of the camera for trigger mode 2 is shown in Figure 14.

Figure 14. Trigger mode 2 exposure and readout timing sequence.

The minimum active trigger pulse width in trigger mode 2 is 55 μ s. There is no maximum allowable trigger pulse width, but the user should be aware that the longer the exposure, the more dark current that is accumulated by the focal plane array. If the exposure is too long, the focal plane array may saturate with dark current. The ceiling of the trigger rate for this mode is the maximum frame rate.

In trigger mode 3, the external trigger signal gates on and off the internal timing of the exposure and line rate. That is, whenever the selected trigger input is in an inactive state the camera is paused. Whenever the selected trigger input is active, the camera will operate as though it were free-running. Once an exposure has been initiated, the camera will finish that particular exposure and readout even though the trigger might have already transitioned to an inactive state. Because of this, the trigger should be held in the inactive state for a minimum of the exposure period plus the frame readout time. The delay between this trigger transition and start of exposure is 5 to 6 pixel periods. The timing sequence of the camera for trigger mode 3 is shown in Figure 15.

Figure 15. Trigger mode 3 exposure and readout timing sequence.

While in any externally triggered mode all correction modes are available, however, the factory offset and gain corrections may not be valid for the given users integration time or repetition rate. To configure the factory offset and gain corrections for a trigger mode other than the internal trigger mode, please contact your SUI representative.

5.4.7.1 Set Trigger Mode

Description	Sets the trigger and timing modes. Note: Execution of this
	command that results in a change in trigger mode will also
	apply a reset to the trigger and FPA scan digital logic clearing
	any existing trigger or scan errors.

Setting Type	Global				
Command	TRIG:MOI	TRIG:MODE mode			
Parameters	mode	mode			
Туре	unsigned i	unsigned integer			
Range					
	(С	Internally triggered, internally timed		
	1	1 Externally triggered, internally timed			
	2	2	Externally triggered, externally timed		
		3	Externally gated, internally timed		

Return Values none

Example TRIG:MODE 1

5.4.7.2 Get Trigger Mode

Description	Returns the trigger and timing mode.			
Setting Type	Global			
Command	TRIG:MODE]?		
Parameters	none			
Return Values	mode			
Туре	unsigned integer			
Range				
	0	Internally triggered, internally timed		
	1	Externally triggered, internally timed		
	2 Externally triggered, externally timed			
	3	Externally gated, internally timed		
Example	TRIG:MODE	2? query command		
	1	return value		

5.4.7.3 Set Trigger Source

- Description Sets the trigger source. The camera can accept triggers from either the trigger SMA connector on the back panel or the Camera Link CC1 signal. Trigger source mode 3 can be used to gate one trigger source from reaching the camera by controlling the state of the other source. Note: Trigger source mode 3 should not be selected if one trigger source is not actively being controlled, since it may unexpectedly cause the other trigger source to be gated off. Note: Execution of this command that results in a change in trigger source will also apply a reset to the trigger and FPA scan digital logic clearing any existing trigger or scan errors.
- Setting Type Global
- Command TRIG:SOURCE value
- Parameters value

Туре	unsigned	integer
51	5	

Range

0	None
1	Trigger SMA
2	Camera Link CC1
3	Trigger SMA or Camera Link CC1

Return Values none

Example TRIG:SOURCE 2

5.4.7.4 Get Trigger Source

Description	Returns the trigger source.			
Setting Type	Global			
Command	TRIG:SOU	UR	CE?	
Parameters	none			
Return Values	value			
Туре	unsigned integer			
Range				
	(0	None	
	-	1	Trigger SMA	
		2	Camera Link CC1	
	· · ·	3	Trigger SMA or Camera Link CC1	
Example	TRIG:SOU	UR	CE? query command	
	2		return value	

5.4.7.5 Set Trigger Polarity

Description Sets the trigger polarity. Active high indicates that a low to high transition will trigger the camera and the high pulse width of the trigger signal will set the exposure period when in externally timed mode. Note: Execution of this command that results in a change in trigger polarity will also apply a reset to the trigger and FPA scan digital logic clearing any existing trigger or scan errors.

Setting	Туре	Global	
setting	туре	Giobai	

Command TRIG:POL value

Parameters value

Type unsigned integer

Range

	Trigger SMA	Camera Link CC1
0	High active	High active
1	Low active	High active
2	High active	Low active
3	Low active	Low active

Return Values	none
Example	TRIG:POL 0

5.4.7.6 Get Trigger Polarity

Description	Returns the trigger polarity.
Setting Type	Global

Imaging Beyond Visible[™]

Command	TRIG:POL?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range		
	Trigger SMA	

			Trigger SMA	Camera Link CC1
		0	High active	High active
		1	Low active	High active
		2	High active	Low active
		3	Low active	Low active
Example	TRIG:PO	DL?	query	command
	0		return	n value

5.4.7.7 Set Trigger Delay

Description Sets the number of pixel clock cycle delay to add to the external trigger source signal. This delay is in addition to the minimum delays discussed in section 5.4.7. The selected delay must be less than the trigger source period for proper delay operation.

Setting Type	Global
Command	TRIG:DELAY value
Parameters	value
Туре	unsigned integer
Range	0 to 16777215
Return Values	none
Example	TRIG:DELAY 1000

5.4.7.8 Get Trigger Delay

Description	Returns the trigger	delay setting.
Setting Type	Global	
Command	TRIG:DELAY?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 16777215	
Example	TRIG:DELAY?	query command
	1000	return value

5.4.8 Gain Commands

5.4.8.1 Set Digital Gain

Description Sets the digital gain value. Digital gain can be used to ensure that the image data fills the digital output range when offset and gain corrections are applied. In addition, digital gain can be used to stretch low signal images across a greater portion of the output range.

Setting Type	Global
--------------	--------

Command GAIN:DIGITAL value

Parameters value

Type string

Range

1X	Apply 1X digital gain multiplier
2X	Apply 2X digital gain multiplier
4X	Apply 4X digital gain multiplier
8X	Apply 8X digital gain multiplier

Return Values	none	
Example	GAIN:DIGITAL	2X

5.4.8.2 Get Digital Gain

Description	Returns the digital gain value
Setting Type	Global
Command	GAIN:DIGITAL?
Parameters	none
Return Values	value
Туре	string
Range	
	1.77 1.17

	1X	1X digital gain multiplier applied		
	2X	2X digital gain multiplier applied		
	4X	4X digital gain multiplier applied		
	8X	8X digital gain multiplier applied		
GAIN:DIGITAL? query command				

Example

2X

-- return value

5.4.9 Imager Scanning Commands

5.4.9.1 Set Scan State

Description Sets the imager scanning state. When imager scanning is disabled no data will be available at the digital output port and the analog video image content will not be updated.

Setting Type Global

Command	SCAN:ST	TATE s	tate
Parameters	state		
Туре	string		
Range			
		ON	Enable imager scanning

		OFF	Disable imager scanning
Return Values	none		
Example	SCAN:S'	TATE	ON

5.4.9.2 Get Scan State

Description	Returns the state of the imager scanning.						
Setting Type	Global						
Command	SCAN:S'	SCAN: STATE?					
Parameters	none						
Return Values	state						
Туре	string						
Range							
		ON	Imager scanning enabled				
		OFF	Imager scanning disabled				
Example	SCAN:S'	TATE?	query command				

ON -- return value

5.4.9.3 Set Over-Scan State

DescriptionSets the over-scan state. When over-scan is enabled the line
valid signal width is increased to include inactive pixels before
and after the active pixels within a line and additional, inactive
lines of data are returned. When over-scan is disabled the
number of pixels per line and lines per frame returned is the
resolution of the FPA. See timing diagrams in section 3.1.2 for
a detailed description of timing signals and over-scan data.Setting TypeGlobalCommandSCAN:OVER state

Parameters state

	Type Range	string
		ON Enable over-scan
		OFF Disable over-scan
	Return Values	none
	Example	SCAN:OVER ON
5.4.9.4	Get Over-Scan	State
	Description	Returns the over-scan state.
	Setting Type	Global
	Command	SCAN: OVER?
	Parameters	none
	Return Values	state
	Туре	string
	Range	
	-	ON Over-scan enabled
		OFF Over-scan disabled
	Example	SCAN:OVER? query command
		ON return value

5.4.10 Analog Video Commands

An analog composite video output is available at the SMA connector on the back of the camera labeled *VIDEO OUT* as shown in Figure 1. The analog video signal is compliant with the EIA-170 video standard. This analog video frame displays a maximum of 645 active pixels per line and 485 active lines of information at 30 frames per second by presenting two, interlaced video fields of 242.5 lines in 1/60th of a second each. To allow independent timing operation of the focal plane array readout and the analog video output and allow progressive readout of the focal plane array with an interlaced analog video signal, the SU-KTS camera passes the image data through a dual-port memory buffer.

The dual-port video memory is configured to store up to two 645 x 485 frames of information at 12-bit resolution. Pixel data is passed through a 12 to 12-bit look-up table before being written into the dual-port memory. The commands of this section describe supported selectable modes that affect the look-up table and dual-port video memory read/write operations of the camera.

5.4.10.1 Blank Video Buffer

Description Writes black video pixel value to all video memory locations. If scanning is disabled, the video will remain black until the next frame readout occurs.

Imaging Beyond Visible[™]

Setting Type	N/A					
Command	VID: BLANK					
Parameters	none					
Return Values	none					
Example	VID: BLANK	 black	out	the	analog	video

5.4.10.2 Set Video Double Buffer Mode State

Set the video dual-port memory double buffer write/read Description mode state. If on, two frame buffers are used to store the analog video frames and writing is performed to alternate buffers. If a read is still being performed on the next alternate buffer to be written, the write of the frame is skipped. Similarly, reading from the dual-port memory in double buffer mode is performed from alternate frames buffers as long as a write is not in progress. If a write is in progress, a read from the same frame buffer is repeated. This mode creates an analog video signal where every analog frame contains data from a single FPA readout. However, if the focal plane array readout is not synchronized to the analog video frame rate (see section 5.4.6.6), not all readout frames will be displayed. With this mode enabled there will also be a delay between the time the FPA readout occurred and the time the data is available on the analog video of between half and a full analog video frame (16.7 ms to 33.4 ms) for full resolution mode and up to one analog video field (16.7 ms) in 2X zoom mode. If the readout of the focal plane is synchronized to the analog video frame rate, the delay will be one-half of the analog video frame period (16.7 ms). If double buffer mode is off, reading and writing occurs using a single frame buffer and writing is never inhibited. With this mode, the delay between the readout of pixel data and when it is available on the analog video output is reduced, but a single analog frame may contain data from different focal plane array read frames. Setting Type Global Command VID: 2BUFF state **Parameters** state Type string Range Enable double buffer video mode ON

OFF Disable double buffer video mode

Return Values none Example VID:

VID:2BUFF ON

Imaging Beyond Visible[™]

5.4.10.3 Get Video Double Buffer Mode State

Description	Returns the vimode state.	ideo dual-port memory double buffer write/read			
Setting Type	Global				
Command	VID:2BUFF?	VID:2BUFF?			
Parameters	none				
Return Values	state				
Туре	string				
Range					
	ON	Video double buffer video mode enabled			
	OFF	Video double buffer video mode disabled			
Example	VID:2BUFF?	query command			
	ON	return value			

5.4.10.4 Set Video 2X Zoom Mode State

Description Set the video 2X zoom mode state. If on, the analog video resolution is 322 pixels per line by 242 lines where independent focal plane array readout frames can be presented in each EIA-170 field. When 2X zoom is enabled and the FPA readout is being synchronized to the analog video, unique readout frames will be presented in each 1/60 of a second EIA-170 video field when the internally timed frame period is set to a value less that the analog video field period (see section 5.4.6.6). Operational Setting Type

Command	VID:ZOOM state
Parameters	state
Туре	string

Type

Range

ON	Enable analog video zoom mode
OFF	Disable analog video zoom mode

Return Values none Example VID: ZOOM OFF

5.4.10.5 Get Video 2X Zoom Mode State

Returns the video 2X zoom mode state.
Operational
VID:ZOOM?
none
state

Imaging Beyond Visible[™]

Туре	string		
Range			
		ON	Analog video zoom mode enabled
		OFF	Analog video zoom mode disabled
Example	VID:ZOOM? query command		
	OFF		- return value

5.4.10.6 Set Video Buffer Read Column Start

Description Sets the column on which reading from the dual-port video memory begins. This number is programmed in column triplets (a result of the dual-port memory architecture). The value can be used to change the location of the 322 x 242 zoomed analog video frame within the 320 x 240 readout frame.

Setting Type Op	erational

Command VID:RD:COL value

Parameters value

Type unsigned integer

Range 0 to 255

Return Values none

Example VID:RD:COL 50 -- begin read on FPA col 150

5.4.10.7 Get Video Buffer Read Column Start

Description Returns the column triplet on which reading from the dualport video memory begins.

Setting Type	Operational	
Command	VID:RD:COL?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 255	
Example	VID:RD:COL?	query command
	50	return value

5.4.10.8 Set Video Buffer Read Row Start

Description	Sets the row on which reading from the dual-port video memory begins. This number is programmed in row doublets when in full-resolution video mode and single rows when in 2X zoom video mode. The value can be used to change the location of the 322 x 242 zoomed analog video frame within the 320 x 240 readout frame.
Setting Type	Operational
Command	VID:RD:ROW value
Parameters	value
Туре	unsigned integer
Range	0 to 255
Return Values	none
Example	VID:RD:ROW 100 begin read on FPA row 100

5.4.10.9 Get Video Buffer Read Row Start

Description	Returns the row on which reading from the dual-port video
	memory begins. The number is in row doublets when in full-
	resolution video mode and single rows when in 2X zoom video
	mode.

Setting Type	Operational	
Command	VID:RD:ROW?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 215	
Example	VID:RD:ROW?	query command
	100	return value

5.4.10.10 Set Video Look-Up Table Number

Description	Sets the look-up table number to be used. Two preprogrammed table mappings are available.			
Setting Type	Global			
Command	VID:LUT value			
Parameters	value			
Туре	unsigned integer			
Range				
	0 Linear Mapping			

Gamma Mapping

Return Values none

1

SUI, Goodrich Corporation	Imaging B	eyond Visible™	SUI KTS Camera	
Example	VID:LUT 1	use Gamma LUT m	apping	
5.4.10.11 Get Video Look-Up Table Number				
Description	Returns look-up	b table number being used.		
Setting Type	Global			
Command	VID:LUT?			
Parameters	none			

5.4.11	Thermal	Commands

Example

Return Values

Туре

Range

5.4.11.1 Get Camera Internal Temperature

value

VID:LUT?

1

unsigned integer

0

1

Description	Returns the internal	camera temperature in degrees Celsius
Setting Type	N/A	
Command	CAMERA: TEMP?	
Parameters	none	
Return Values	temperature	
Туре	signed integer	
Range	-55 to +125	
Example	CAMERA: TEMP?	query command
	25	return value

Linear Mapping Gamma Mapping

-- query command

-- return value

5.4.11.2 Get Thermoelectric Cooler Lock Status

Returns status of the thermoelectric cooler stabilization lock of Description the focal plane array temperature to the set point. The temperature is considered locked when the current temperature is within $\pm 0.1^{\circ}$ C of the set point.

Setting Type	N/A
Command	TEC:LOCK?
Parameters	none
Return Values	status
Туре	string
Range

5				
	L	JOCKED	TEC stabilized	
	Ν	IOT LOCKED	TEC not stabilized	
Example	TEC:LOCK		query command	
	LOCKED		return value	

5.4.11.3 Get Thermoelectric Cooler Set Point

Description Returns the thermoelectric cooler temperature set point in degrees Celsius.

Setting Type	Operational		
Command	TEC:SETPOINT?		
Parameters	none		
Return Values	value		
Туре	integer		
Range	-20 to 80		
Example	TEC:SETPOINT?	 query co	ommand
	22	 return v	value

5.4.11.4 Set Thermoelectric Cooler State

Description	Sets the state of the thermoelectric cooler.
Setting Type	Global
Command	TEC:ENABLE
Parameters	state
Туре	string
Range	

ON	Enables TEC
OFF	Disables TEC

Return Values none Example TEC:ENABLE ON

5.4.11.5 Get Thermoelectric Cooler State

DescriptionReturns the state of the thermoelectric cooler.Setting TypeGlobal

Command TEC:ENABLE?

string

Parameters state

Туре

Range

ON	TEC Enabled
OFF	TEC Disabled

Imaging Beyond Visible[™]

Return Values	none		
Example	TEC:ENABLE?	 query	command
	ON	 return	value

5.4.12 Digital Output Commands

5.4.12.1 Set Digital Output Mode

Description Sets the mode of the Camera Link digital data interface. The asynchronous serial communication and trigger signaling of the Camera Link interface are not affected by this mode selection.

Setting Type	Global				
Command	DIGITAL	DIGITAL:MODE mode			
Parameters	mode				
Туре	unsigned	intege	r		
Range	_				
		0	Camera Link Data Disabled		
	Γ	1	Camera Link Data Enabled		

Return	Values	none

Example	DIGITAL:MODE	1
---------	--------------	---

5.4.12.2 Get Digital Output Mode

Description	Returns the mo	de of the Camera Link digital interface.
Setting Type	Global	
Command	DIGITAL:MOD	Ε?
Parameters	none	
Return Values	mode	
Туре	unsigned intege	er
Range		
	0	Camera Link Disabled
	1	Camera Link Enabled
Example	DIGITAL:MOD	E? query command

1 return v

5.4.12.3 Set Digital Data Source

Description The digital data source can be set to one of several stages along the digital signal path. Note: When a particular stage is selected for the digital data source, the features for that stage must still be individually enabled for the effects of that stage to appear in the output data. For example, when PAT is selected

SUI, Goodrich Corporation	Imaging Beyond Visible [™]	SUI KTS Camera
	as the digital data source, the test pattern o	or frame stamp

as the digital data source, the test pattern or frame stamp feature must still be enabled using the commands of section 5.4.15 for the test data and frame stamp to be inserted in the data stream.

Setting Type	Global	
Command	DIGITAL:SOURCE	source
Parameters	source	

string

Туре

Range

RAW	Stage 1, Raw Data
CORR	Stage 2, Corrected Data
ENH	Stage 3, Enhanced Data
PAT	Stage 4, Test Pattern Data
LUT	Stage 5, Video LUT Data

Return Values none Example DIGI

DIGITAL:SOURCE PAT

5.4.12.4 Get Digital Data Source

Description	Returns the source of the digital data.
Setting Type	Global
Command	DIGITAL:SOURCE?
Parameters	none
Return Values	source
Туре	string
Range	

RAW	Stage 1, Raw Data
CORR	Stage 2, Corrected Data
ENH	Stage 3, Enhanced Data
PAT	Stage 4, Test Pattern Data
LUT	Stage 5, Video LUT Data

Example	DIGITAL:SOURCE?	?	query	command
	PAT		return	value

5.4.13 Camera Information Commands

5.4.13.1 Get Camera Serial Number

Description	Returns the camera serial number.
Setting Type	Global
Command	CAMERA: SN?
Parameters	none

SUI, Goodrich Corporation Imaging Beyond Visible[™]

Return Values	value	
Туре	string	
Range	up to 9 character al	pha numeric string
Example	CAMERA:SN?	query command
	0605S8350	return value

5.4.13.2 Get Camera Part Number

Description	Returns the camera	part number.
Setting Type	Global	
Command	CAMERA: PN?	
Parameters	none	
Return Values	value	
Туре	string	
Range	up to 9 character al	pha numeric string
Example	CAMERA: PN?	query command
	8000-0210	return value

5.4.13.3 Get Camera Revision

Description	Returns the camera	revision.
Setting Type	Global	
Command	CAMERA:REV?	
Parameters	none	
Return Values	value	
Туре	string	
Range	up to 9 character al	pha numeric string
Example	CAMERA:REV?	query command
	В	return value

5.4.13.4 Get Firmware Part Number

Description	Returns the part number of the camera's firmware.
Setting Type	Global
Command	FIRM: PN?
Parameters	none
Return Values	value
Туре	string
Range	up to 9 character alpha numeric string

Imaging Beyond Visible[™]

Example	FIRM:PN?	 query command
	4102-0061	 return value

5.4.13.5 Get Firmware Revision

Description	Returns the revision of the camera's firmware	<u>.</u>
Setting Type	Global	
Command	FIRM:REV?	
Parameters	none	
Return Values	value	
Туре	string	
Range	up to 9 character alpha numeric string	
Example	FIRM:REV? query command	
	C return value	

5.4.13.6 Get Focal Plane Array Serial Number

Description	Returns the serial r	number of the camera's focal plane array.
Setting Type	Global	
Command	FPA:SN?	
Parameters	none	
Return Values	value	
Туре	string	
Range	up to 9 character a	llpha numeric string
Example	FPA:SN?	query command
	1705S1440	return value

5.4.13.7 Get Focal Plane Array Number of Columns

Description	Returns the numbe	r of columns of the focal plane array.
Setting Type	Global	
Command	FPA:COLS?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 65535	
Example	FPA:COLS?	query command
	320	return value

Imaging Beyond Visible[™]

5.4.13.8 Get Focal Plane Array Number of Rows

Description	Returns the number	of rows of the focal plane array.
Setting Type	Global	
Command	FPA:ROWS?	
Parameters	none	
Return Values	value	
Туре	unsigned integer	
Range	0 to 65535	
Example	FPA:ROWS?	query command
	256	return value

5.4.14 Status and Reset Commands

The user can poll the camera's error status with the ERROR? command, which returns a binary encoded 8-bit error value. A non-zero error code indicates that an error has occurred. If the error code is not zero, the status LED will also flash if enabled as described in section 3.1.5. Table 6 below can be used to decode the error value returned by the ERROR? command. A bit value of one indicates an error.

To reset an error bit the cause of the error must first be resolved. Once the error condition is resolved the error needs to be cleared. Most errors can be cleared by rebooting the camera. Some errors can be cleared by performing a firmware reset with the RESET command. Resolving the cause of the error alone will not clear the error.

Bit	Error	Cause	Resolution
	Description		
0 (LSB)	PLL1 error	Internal error	Power cycle camera
1	PLL2 error	Internal error	Power cycle camera
2	Trigger error	Trigger rate too high	 Reduce trigger rate Reset firmware, reboot camera, or send a trigger command that causes a trigger parameter change (see section 5.4.7).
3	Scan error	Insufficient time to readout frame.	 Increase readout time by modifying exposure and frame periods Reset firmware, reboot camera, or send a trigger command that causes a trigger parameter change (see section 5.4.7).
4	Correction load error	Internal error	Reboot camera
5	TEC error	TEC unable to maintain set point or internal error	 Resolve thermal issues - see section 0 Thermal Management Reset firmware or reboot camera
6	Unused		Unused
7 (MSB)	Unused		Unused

Table 6. Error value descriptions, causes and resolutions

For applications that require continuous operation of the camera and need to change the mode of the camera from its power-on state, the user can monitor the power cycle status of the camera using the PWRDWN command. By setting the PWRDWN status flag after a reboot of the camera, the user can determine if power to the camera has been cycled or a reboot has occurred since the last poll.

5.4.14.1 Get Error Status

Description

Returns an encoded 8-bit error code. A bit value of one indicates an error has occurred.

	Bit	Error Description
LSB	0	PLL1 error
	1	PLL2 error
	2	Trigger error
	3	Scan error
	4	Correction load error
	5	TEC error
	6	Unused
MSB	7	Unused

Setting Type	N/A					
Command	ERROR?					
Parameters	none					
Return Values	value					
Туре	unsigned int	eger				
Range	0 to 255					
Example	ERROR?		query co	ommaı	nd	
	12		trigger	and	scan	errors

5.4.14.2 Reset Firmware

Description Sets the digital logic reset state. When the digital logic is placed in reset, camera operations will be suspended and all errors will be cleared. When the firmware is taken out of reset the camera will resume operation.

Setting Type	N/A
Command	RESET value
Parameters	value
Туре	unsigned integer
Range	

		0	Reset all digital logic
		255	Remove reset from all digital logic
Return Values	none		
Example	RESET	0	place firmware in reset
	RESET	255	take firmware out of reset

Imaging Beyond Visible[™]

5.4.14.3 Get Reset State

Description	Returns the digital lo	ogic r	reset stat	e.
Setting Type	N/A			
Command	RESET?			
Parameters	none			
Return Values	value			
Туре	unsigned integer			
Range	0 to 255			
Example	RESET?		query	command
	0		in res	set

5.4.14.4 Reboot Camera

Description	Execute the power- processor. This will	up initialization sequence of the command clear the power-down detect flag.	d
Setting Type	N/A		
Command	REBOOT		
Parameters	none		
Return Values	banner		
Туре	string		
Range	see section 5.3		
Example	REBOOT	restart command processor	

5.4.14.5 Set Power-Down Detect Flag

Description	Sets the power-do initialized to 0. If the can query its statu cycled since the last	wn detect flag. ne value is set usin s to detect if the : query.	On reboot, ig this comma camera has	this flag is and, the user been power
Setting Type	N/A			
Command	PWRDWN			
Parameters	none			
Return Values	none			
Example	PWRDWN	set power	-down det	ect flag

5.4.14.6 Get Power-Down Detect Flag

Description	Returns the power-down detect flag status.
Setting Type	N/A
Command	PWRDWN?
Parameters	none

Imaging Beyond Visible[™] **SUI, Goodrich Corporation SUI KTS Camera** Return Values value Type unsigned integer Range 0 Initial value on reboot 1 Value set by user to monitor power-down status Example -- query command PWRDWN? 1 -- camera not power cycled 5.4.14.7 Set LED State Description Sets the state of the status LED. Setting Type Global Command LED Parameters state Type string Range **Enables LED** ON **Disables LED** OFF Return Values none Example LED ON 5.4.14.8 Get LED State Description Returns the state of the status LED. Setting Type Global Command LED? Parameters state Type string Range LED Enabled ON OFF LED Disabled **Return Values** none Example LED? -- query command ON -- return value 5.4.14.9 Set Analog-to-Digital Converter (ADC) State

Imaging Beyond Visible[™] SUI, Goodrich Corporation Command ADC: ENABLE Parameters state Type string Range Enables ADC ON **Disables ADC** OFF **Return Values** none Example ADC: ENABLE ON 5.4.14.10 Get Analog-to-Digital Converter (ADC) State Description Returns the state of the ADC. Setting Type Global Command ADC: ENABLE? Parameters state Type string Range ADC Enabled ON ADC Disabled OFF

Return Values	none	
Example	ADC: ENABLE?	 query command
	ON	 return value

5.4.14.11 Set Digital-to-Analog Converter (DAC) State

Description	Sets the power co	state o onsump	f the DAC. The ADC can be disabled to re ption when the analog output is not in use.	duce
Setting Type	Global			
Command	DAC: EN	ABLE		
Parameters	state			
Туре	string			
Range				
		ON	Enables DAC	
		OFF	Disables DAC	
Return Values	none			
Example	DAC:EN	ABLE	ON	

SUI KTS Camera

5.4.14.12 Get Digital-to-Analog Converter (DAC) State

Description	Returns the state of the DAC.
Setting Type	Global

SUI, Goodrich Corporation	Imaging Be	yond Visible [™]	SUI KTS Camera
Command	DAC: ENABLE?		
Parameters	state		
Туре	string		
Range			
	ON	DAC Enabled	
	OFF	DAC Disabled	
Return Values	none		
Example	DAC:ENABLE?	query command	
	ON	return value	

5.4.15 Test Commands

The Test Pattern mode can be used to verify the integrity of the data collection by the frame grabber. When this mode is enabled, the SU-KTS camera returns ramping pixel count values in place of digitized focal plane array data. The pixel values increment by 1 for successive pixels within a line and by 8 for successive lines. For example, the line from a test pattern frame from an SU-KTS camera supporting a 320 x 256 element array where the first pixel has a value of 3 will end with a pixel value of 322. The next line of the frame will then begin with 11 and end with 330. The timing of the data presenting on the Camera Link interface remains unchanged from when active pixel data is returned. The test pattern data is returned for both inactive, if their return has been enabled, and active pixels clocks cycles of the data transfer shown in Figure 2. The test pattern data is only transmitted over the interface as described if the Digital Signal Source is set to the PAT or LUT. (See section 5.4.12.3 and Figure 8 for more information.)

When the Frame Stamp mode is enabled, the camera returns a count value that is incremented by 1 for each successive frame in the first pixel of the frame. When the frame stamp count reaches its maximum 12 bit depth value of 4,095, the next value returned rolls over to 0. The Frame Stamp mode can be used to verify the continuity of data collection by the frame grabber.

5.4.15.1 Set Test Pattern State

Description	Sets the in place values st pixel of t	test patte of data f art at 1 he line, a	ern state. When on a test pattern is returned from the focal plane array. Test pattern pixel for the first line, incrementing by 1 for each and increment by 16 for each successive line.
Setting Type	Global		
Command	TESTPA	r state	9
Parameters	state		
Туре	string		
Range			
		ON	Enable test pattern

OFF Disable test pattern

Return Values	none	
Example	TESTPAT	ON

5.4.15.2 Get Test Pattern State

Description	Returns	the state	of the test pattern.
Setting Type	Global		
Command	TESTPA	Т?	
Parameters	none		
Return Values	state		
Туре	string		
Range			
		ON	Test pattern enabled
		OFF	Test pattern disabled
Example	TESTPA	Τ?	query command
	ON		return value

5.4.15.3 Set Frame Stamp

Description Sets the frame stamp state. When on a count value incrementing by 1 from 0 to 4095 is returned in place of the first pixel in the frame. Over-scan can be enabled to provide inactive pixels before the active pixel data, which will result in the frame stamp being positioned in an inactive data area.

Setting Type	Global	
Command	FRAME:STAMP	state
Parameters	state	
Туре	string	

Type Range

ON	Enable frame stamp
OFF	Disable frame stamp

Return Values	none	
Example	FRAME:STAMP	ON

5.4.15.4 Get Frame Stamp State

Description	Returns the frame stamp state.
Setting Type	Global
Command	FRAME: STAMP?
Parameters	none

SUI, Goodrich Corporation	Imaging Bey	ond Visible [™]	SUI KTS Camera
Return Values Type Range	state string		
-	ON	Frame stamp enabled	
Example	FRAME:STAMP?	query com return va	mand lue

6 SPECIFICATIONS

6.1 MECHANICAL SPECIFICATIONS

Control	SDR 26-pin connector (Camera Link) or SDR 14-pin connector (EIA-232 signal levels)
Image Data	SDR 26-pin connector (Camera Link)
Power	Hirose HR10-7R-6PA connector
Analog Video	50 Ω SMA, 1 V max output with termination
Trigger	50 Ω SMA, 5 V TTL max input
Camera Body Mount	1/4-20 and M6 tapped holes
Status LED	Power indicator, imager temperature control status, error status

6.2 INTERFACES

	71.7 mm x 52.1 mm x 52.1 mm
Length x Width x Height	2.82 in. x 2.05 in. x 2.05 in
	Length includes I/O connectors and lens adapter
Weight	< 270 g (no lens)
Focal Plane Array Format	320 x 256 pixels
Pixel Pitch	25 μm
Active Area	8.0 mm x 6.4 mm x 10.2 mm diagonal
Lens Mount	C-mount
Sensor Alignment	17.6 mm behind the C-mount flange (physical) 17.1 mm behind the C-mount flange (optical)

6.3 ENVIRONMENTAL AND POWER SPECIFICATIONS

Operating Case Temperature	-10°C to 40°C
Storage Temperature	-10°C to 60°C
Humidity	Non-condensing
Power Requirements:	
AC Adapter Supplied	100-240 VAC, 47-63 Hz
DC Voltage	+8-16 V
Typical Power	<1.7 W at 20°C ambient, 4 W @ 40°C

6.4 ELECTRO-OPTIC PERFORMANCE SPECIFICATIONS

Optical Fill Factor	100%
Spectral Response	0.9 μm to 1.7 μm
Quantum Efficiency	> 65% from 1 μm to 1.6 μm
Mean Detectivity, D* ¹	> 3 x 10 ¹² cm √Hz/W
Noise Equivalent Irradiance ¹	< 5 x 10 [°] photons/cm ² ·s
Read Noise (rms)	< 400 electrons
Full Well (typical)	800k electrons
True Dynamic Range	> 2000:1
Operability ²	> 99%

 $^{1}\lambda$ =1.55 µm, exposure time = 16.3 ms (no lens), corrections off 2 The % of pixels with responsivity deviation less than 30% from the mean

7 PRODUCT SUPPORT

7.1 COMMON PROBLEMS AND SOLUTIONS

Problem	Possible Causes	Solution
	Power is off or low	Verify input power meets requirements described in section 3.1.1. Status LED will illuminate when camera is powered and the LED is enabled.
No data is present at	Cables are fully or partially disconnected.	Verify cameras cable(s) are properly connected as described in section 2.1.
the digital port, frame grabber times out	Digital output is disabled	Set digital output mode to Camera Link Enabled (DIGITAL:MODE 1).
	Imager scanning is disabled	Set scan state to enabled (SCAN: STATE ON).
	Camera is in external trigger mode, but not receiving a trigger	Test the camera in internal trigger mode to confirm normal operation. If internal trigger mode operation is normal, see "Camera is not responding to trigger input."
	Exposure time/gain is too small for light level	Enable AGC or select longer exposure time and/or higher FPA sensitivity settings, if available.
Analog video output and/or digital image viewed through	Optics are not letting enough light through	Open lens aperture if applicable. Test imager without optics present and/or with incandescent bulb.
frame grabber software is dark	Display intensity scale too insensitive to make low light levels visible	Increase display intensity scale to determine if there is any change in image data with change of illumination levels. For the analog video out, enhancement can be enabled to stretch the image data over the display range.

Problem	Possible Causes	Solution
Analog video appears noisy	Un-terminated video signal at the receiver	Enable or place 75 Ω termination resistor at the receiving end of the video cable.
	Trigger source is not connected	Verify trigger SMA cable is properly connected if using SMA. Verify frame grabber trigger source is properly configured if using Camera Link CC1.
	Trigger source is set to both SMA and Camera Link CC1 (TRIG: SOURCE 3) and the unused input is not in an inactive logic state	Set the trigger source to the trigger input being used (TRIG:SOURCE 1 for SMA, TRIG:SOURCE 2 for CC1) or ensure that the unused input is in an inactive logic state
Camera is not responding to a trigger input	Trigger signal does not conform to voltage and/or timing requirements of the camera	Verify trigger source meets electrical requirements of section 3.1.4 if the SMA is the source, and that it meets the timing requirements described in section 5.4.7. Check camera error status for a trigger or scan error. If oscilloscope is available, view the trigger input signal (if source is SMA) and the synchronization output timing to verify it meets the requirements of the camera for the selected trigger mode.
Camera intermittently responds to triggers, resulting in missing frames, or in some cases timeout errors	Trigger period is too short, causing following triggers to be ignored as they occur during readout	Check camera error status for a trigger or scan error. Modify trigger to meet timing requirements for the selected trigger mode and supported FPA.
Frame grabber software reports not receiving enough data before timing out	Acquisition size parameters larger than actual data available	Reduce acquisition window size parameters, decrementing one pixel or line at a time. Some frame grabbers require overhead pre- or post-valid pixels or lines to properly grab the digital data.

Problem	Possible Causes	Solution
Frame grabber software shows black edges on display	Acquisition window parameters are misaligned to digital data presented by the camera	Change the acquisition window pre-valid and/or post- pixel counts to align the grabbed data to the active pixels.
Frame grabber software display shows torn image, slanted with the top to the right	Acquisition window parameters do not allocate enough pixels to the line	Increase the number of pre- valid or post-valid pixels until the image becomes properly aligned.
Frame grabber software display shows torn image, slanted with the top to the left	Acquisition window parameters result in too many pixels in the line	Decrease the number of pre- valid or post-valid pixels until the image becomes properly aligned.

7.2 CUSTOMER SUPPORT

For additional product support please contact SUI, Goodrich Corporation between 8am and 5pm EST at 609-520-0610 and ask to speak to an applications engineer.

For general information about this product or for information on SUI, Goodrich Corporation's line of other image sensing products, please contact:

SUI, Inc. Sales Department 3490 US Highway Route 1 Building 12 Princeton, NJ 08540 Phone (609) 524-0610 Fax (609) 520-0638 www.sensorsinc.com

7.3 WARRANTY

All SUI, Goodrich Corporation products are warranted to be free from defects in workmanship and materials "Nonconformity" for a period of 12 months from the date of shipment. This warranty is limited to the repair or replacement of the unit.

This warranty does not apply to products which SUI, Goodrich Corporation determines, upon inspection, have failed, become defective or unworkable due to abuse, mishandling, misuse, alteration, negligence, improper installation, use which is not in accordance with the information and precautions described in the

applicable operating manual, or other causes beyond SUI, Goodrich Corporation's control.

This warranty does not apply to (i) any products or components not manufactured by SUI, Goodrich Corporation or (ii) any aspect of the products based on Buyer's specification, unless Seller has reviewed and approved such specification in writing.

In-warranty repaired or replacement products are warranted only for the remaining nonexpired portion of the original warranty period.

Except for the foregoing warranty, SUI, Goodrich Corporation specifically disclaims and excludes all other warranties, expressed or implied, including implied warranties of non-infringement, merchantability or fitness for a particular purpose.

If visible damage has occurred: It *must* be noted on all copies of the freight bill and signed by the driver. This preserves your rights and the carrier's liability.

If damage was concealed: Open all cartons as soon as possible! Concealed damage must be reported in writing within 5 days of receipt. Contact our shipping department for assistance between 8:00 A.M. and 5:00 P.M. EST

All product returns require contacting the factory to request a Return Material Authorization number (RMA). End users reporting a problem should be prepared to supply the product model number, serial number, description of the problem, and relevant information about the instrumental setup, environmental conditions, user history, etc, as well as contact information. When returning a camera, all accessories, power supplies, cables and camera case should be included to ensure the user problem can be duplicated and corrected.

Imaging Beyond Visible[™]

8 LIST OF ABBREVIATIONS

ADC: analog-to-digital converter ASCII: American standard code for information interchange EST: eastern standard time FPA: focal plane array GMOD: gate modulated IMAQ: Image Acquisition (National Instruments' frame grabber driver software) ITAR: International Traffic in Arms Regulations InGaAs: indium gallium arsenide ITAR: International Traffic in Arms Regulations LED: light-emitting diode LVDS: low voltage differential signaling MDR: mini D ribbon NI: National Instruments NIR: near infrared NTSC: National Television System(s) Committee PCI: peripheral component interconnect RMA: return material authorization QE: quantum efficiency SAE: Society of Automotive Engineers SDR: shrunk delta ribbon (cable connector) SLR: single lens reflex SMA: sub-miniature A (RF connector) SWIR: shortwave infrared TTL: transistor-transistor logic (digital signaling standard) TEC: thermoelectric cooler

9	NOTES

APPENDIX A: Camera Command Summary

Command Description	Command Syntax	Manual	Page
	-	Section	Num
Set Analog to Digital Converter (ADC) State	ADC:ENABLE	5.4.14.9	82
Get Analog to Digital Converter (ADC) State	ADC:ENABLE?	5.4.14.10	83
Set AGC State	AGC:ENABLE state	5.4.4.11	51
Get AGC State	AGC:ENABLE?	5.4.4.12	51
Set AGC High Operational Setting	AGC:OPR:HIGH opr_setting	5.4.4.19	53
Get AGC High Operational Setting	AGC:OPR:HIGH?	5.4.4.20	53
Set AGC Low Operational Setting	AGC:OPR:LOW opr_setting	5.4.4.17	52
Get AGC Low Operational Setting	AGC:OPR:LOW?	5.4.4.18	53
Set AGC Bottom Threshold	AGC:THRESH:BOT value	5.4.4.15	52
Get AGC Bottom Threshold	AGC:THRESH:BOT?	5.4.4.16	52
Set AGC Top Threshold	AGC:THRESH:TOP value	5.4.4.13	51
Get AGC Top Threshold	AGC:THRESH:TOP?	5.4.4.14	51
Set Current Baud Rate	BAUD:CURRENT baud_rate	5.4.2.1	34
Get Current Baud Rate	BAUD:CURRENT?	5.4.2.2	35
Set Future Baud Rate	BAUD:FUTURE baud_rate	5.4.2.3	36
Get Future Baud Rate	BAUD:FUTURE?	5.4.2.4	36
Get Camera Part Number	CAMERA: PN?	5.4.13.2	76
Get Camera Revision	CAMERA:REV?	5.4.13.3	76
Get Camera Serial Number	CAMERA:SN?	5.4.13.1	75
Get Camera Internal Temperature	CAMERA: TEMP?	5.4.11.1	72
Restore Factory Configuration	CONFIG:RESET	5.4.1.1	30
Save Global Configuration	CONFIG:SAVE	5.4.1.2	30
Set Gain Correction State	CORR:GAIN state	5.4.3.1	40
Get Gain Correction State	CORR:GAIN?	5.4.3.2	40
Set Offset Correction State	CORR:OFFSET state	5.4.3.3	41
Set Global Corrected Offset Value	CORR:OFFSET:GLOBAL value	5.4.3.7	42
Get Global Corrected Offset Value	CORR:OFFSET:GLOBAL?	5.4.3.8	42
Set Offset Correction State	CORR:OFFSET state	5.4.3.3	41
Get Offset Correction State	CORR:OFFSET?	5.4.3.4	41
Set Pixel Correction State	CORR:PIXEL state	5.4.3.5	41
Get Pixel Correction State	CORR:PIXEL?	5.4.3.6	42
Set Digital to Analog Converter State	DAC:ENABLE	5.4.14.11	83
Get Digital to Analog Converter State	DAC:ENABLE?	5.4.14.12	83
Set Digital Output Mode	DIGITAL:MODE mode	5.4.12.1	74
Get Digital Output Mode	DIGITAL:MODE?	5.4.12.2	74
Set Digital Data Source	DIGITAL:SOURCE source	5.4.12.3	74
Get Digital Data Source	DIGITAL:SOURCE?	5.4.12.4	75
Set Echo Character	ECHO:CHAR value	5.4.2.7	38
Get Echo Character	ECHO:CHAR?	5.4.2.8	38
Set Echo Mode	ECHO:MODE mode	5.4.2.5	37
Get Echo Mode	ECHO:MODE?	5.4.2.6	38
Set Enhancement/AGC Frame Average and Width	ENH:AVG value	5.4.4.1	47
Weight			
Get Enhancement/AGC Frame Average Weight	ENH:AVG?	5.4.4.2	47
Set Enhancement Contrast Factor	ENH:CF value	5.4.4.3	48
Get Enhancement Contrast Factor	ENH:CF?	5.4.4.4	48
Set Enhancement Minimum Gain Divider	ENH:DIV value	5.4.4.5	48

Imaging Beyond Visible[™]

SUI KTS Camera

Command Description	Command Syntax	Manual	Page
	,	Section	Num
Get Enhancement Minimum Gain Divider	ENH:DIV?	5.4.4.6	48
Set Enhancement State	ENH: ENABLE state	5.4.4.9	50
Get Enhancement State	ENH: ENABLE?	5.4.4.10	50
Set Enhancement/AGC Saturated Pixel State	ENH:SAT state	5.4.4.7	49
Get Enhancement/AGC Saturated Pixel State	ENH:SAT?	5.4.4.8	49
Get Error Status	ERROR?	5 4 14 1	80
Set Exposure Period	EXP value	5461	55
Set Exposure Period with Minimum Frame Period	EXP:MAXRATE value	5465	56
Get Exposure Period	EXP?	5462	55
Get Eirmware Part Number	FIRM: PN?	5 4 13 4	76
Get Firmware Revision	FIRM:REV2	5 4 13 5	70
Get Focal Place Array Number of Columns	FDA:COLS2	5 / 13 7	77
Get Focal Place Array Number of Rows		5/138	78
Get Focal Plane Array Sorial Number	FFA:ROWS:	5 / 12 6	70
Get From Average	EDAME: AVC2	5.4.15.0	54
Set Frame Period	FRAME AVG:	5.4.4.21	54
Cet Frame Period	FRAME · PERIOD Value	5.4.0.5	50
Get Frame State	FRAME · PERIOD?	5.4.6.4	50
Set Frame Stamp State	FRAME: STAMP state	5.4.15.3	85
Get Frame Stamp State	FRAME STAMP?	5.4.15.4	85
Set Digital Gain	GAIN:DIGITAL value	5.4.8.1	65
Get Digital Gain	GAIN:DIGITAL?	5.4.8.2	65
Set LED State	LED	5.4.14.7	82
Get LED State	LED?	5.4.14.8	82
Load Operational Configuration	OPR opr_number	5.4.1.3	30
Delete Last Operational Configuration	OPR:DEL	5.4.1.10	33
Delete All Operational Configurations	OPR:DEL:ALL	5.4.1.11	33
Get Total Number of Operational Configurations	OPR:MAX?	5.4.1.5	31
Create New Operational Configuration	OPR:SAVE	5.4.1.8	32
Set Startup Operational Configuration	OPR:START opr_number	5.4.1.6	31
Update Existing Operational Configuration	OPR:UPDATE	5.4.1.9	33
Get Current Operational Configuration Number	OPR?	5.4.1.4	31
Get Pixel Clock Maximum Rate	PIXCLK:MAX?	5.4.5.1	54
Set Power-Down Detect Flag	PWRDWN	5.4.14.5	81
Get Power-Down Detect Flag	PWRDWN?	5.4.14.6	81
Reboot Camera	REBOOT	5.4.14.4	81
Reset Firmware	RESET value	5.4.14.2	80
Get Reset State	RESET?	5.4.14.3	81
Set Response Mode	RESPONSE mode	5.4.2.9	39
Get Response Mode	RESPONSE?	5.4.2.10	39
Set Over-Scan State	SCAN:OVER state	5.4.9.3	66
Get Over-Scan State	SCAN:OVER?	5.4.9.4	67
Set Scan State	SCAN: STATE state	5.4.9.1	66
Get Scan State	SCAN: STATE?	5.4.9.2	66
Set State of Synchronization of FPA Readout to	SCAN:VIDSYNC state	5.4.6.6	57
Analog Video			
Get State of Synchronization of FPA Readout to	SCAN:VIDSYNC?	5.4.6.7	57
Analog Video			
Set Thermoelectric Cooler State	TEC:ENABLE	5.4.11.4	73
Get Thermoelectric Cooler State	TEC:ENABLE?	5.4.11.5	73
Get Thermoelectric Cooler Lock Status	TEC:LOCK?	5.4.11.2	72
Get Thermoelectric Cooler Set Point	TEC:SETPOINT?	5.4.11.3	73

Imaging Beyond Visible[™]

SUI KTS Camera

Command Description	Command Syntax	Manual	Page
		Section	Num
Set Test Pattern State	TESTPAT state	5.4.15.1	84
Get Test Pattern State	TESTPAT?	5.4.15.2	85
Set Trigger Delay	TRIG:DELAY value	5.4.7.7	64
Get Trigger Delay	TRIG:DELAY?	5.4.7.8	64
Set Trigger Mode	TRIG:MODE mode	5.4.7.1	61
Get Trigger Mode	TRIG:MODE?	5.4.7.2	62
Set Trigger Polarity	TRIG:POL value	5.4.7.5	63
Get Trigger Polarity	TRIG:POL?	5.4.7.6	63
Set Trigger Source	TRIG:SOURCE value	5.4.7.3	62
Get Trigger Source	TRIG:SOURCE?	5.4.7.4	63
Set Video Double Buffer Mode State	VID:2BUFF state	5.4.10.2	68
Get Video Double Buffer Mode State	VID:2BUFF?	5.4.10.3	69
Blank Video Buffer	VID:BLANK	5.4.10.1	67
Set Video Look-Up Table Number	VID:LUT value	5.4.10.10	71
Get Video Look-Up Table Number	VID:LUT?	5.4.10.11	72
Set Video Buffer Read Column Start	VID:RD:COL value	5.4.10.6	70
Get Video Buffer Read Column Start	VID:RD:COL?	5.4.10.7	70
Set Video Buffer Read Row Start	VID:RD:ROW value	5.4.10.8	71
Get Video Buffer Read Row Start	VID:RD:ROW?	5.4.10.9	71
Set Video 2X Zoom Mode State	VID:ZOOM state	5.4.10.4	69
Get Video 2X Zoom Mode State	VID:ZOOM?	5.4.10.5	69

APPENDIX B: Factory Default Global and Operational Parameters