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Optical Filters

• Interference

• (Most are coherent)

What 
makes them 

work?

• Optical communications
• Wavelength division multiplexing 

• Dispersion & distortion compensation

• Optical Sensors

How do we 
use them?
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Operations in Frequency & Time

Attenuate some frequencies 
relative to others

e.g. bandpass (and bandstop) 
filters

Delay a portion of the signal and 
subtract it 

e.g. echo cancellers (electronic) 
dispersion compensators (optical)



Interferometers are Basic Optical Filters
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Feedforward Interference

• Mach-Zehnder Interferometer

• Michelson Interferometer

• Diffraction grating

• Arrayed waveguide grating

Feedback Interference

• Ring Resonator

• Fabry-Perot etalon

• Fiber Bragg gratings

• Dielectric (thin film) filters
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Optical Interference Filters
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Directional Couplers

L

Relative Delay (L)

Feedforward Interference
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A Simple (Optical Waveguide) Splitter

c

js

   where c=cos , s=sin  and c cL   

Directional

Coupler

Coherent Interference, so operations are on electric-field

coupling 

strength
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Comparison to a Digital Filter

Split Delay Weight Combine

Splitter CombinerL

0 1

+

T

b0

b1

YX

Delay

Splitter and Combiner Provide Weighting Function

and DL  T is delay.

Digital

filter

(feedforward)
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Calculating a Filter‟s Impact on a Signal

Fourier transform relates time and frequency domains for a 

linear time-invariant system

filter

x tb g y t x t h tb g b g b g h tb g
impulse response

 H f

frequency response

Signal In Signal Out

A filter is characterized by its Frequency (or Impulse) Response.

     Y f X f H f

193THzf 
1550nm 

 X f
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Magnitude and Phase Response are Important

G. Lenz
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Frequency Response of a Simple Delay Line

Consider a lossless optical delay line of length L:

inE j L

inE e 

 

Delay-line frequency response

j L j TH e e     where en L
T

c

T  

Phase Response
Linear with respect to frequency:

Linear-phase response
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How about Group Delay and Dispersion?
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The change in phase with 

frequency gives the delay.
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Dispersion

If group delay is 

wavelength-dependent,

then device/filter is 

Dispersive!



15

Frequency Response for a Mach Zehnder

Interferometer

L
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Frequency response can be obtained by inspection!
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Mach-Zehnder Interferometer

normalized frequency

L

 1 1xH jcs z  

2 1 2H c z s


 

Feed-forward interference (with identical couplers)

All-zero 

transfer 

functions

g

c
FSR

n L
 path length 

difference

Free Spectral Range

Frequencies of zeros

 1 2j f FSRz e
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b1

Y(z)X(z)

Feedforward Interference Filters

•The Z-transform description yields a polynomial in z.

•The roots (called zeros) tell us the transmission minima!

• Change the coefficients to change the filter response 

z1 a unit

delay
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Symmetric Mach-Zehnder interferometer

Waveguide layout:  Vary phase in one arm relative to the other

Variable coupler

Variable attenuator

1x2 and 2x2 switch

Arms the same length  wavelength independent
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partial reflectors

Feedback Interference Filters

A denominator polynomial in z results due to feedback.

The roots (called poles) tell us the transmission maxima!
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A Ring Resonator Optical Filter

R=L/2

• dispersive (all-pole=min-phase)

• large FSR  short feedback path!

normalized frequency

Two outputs:

1. Feed-back interference

2. Feedforward & Feedback

g

c
FSR

n L


300 300
  e.g. 100GHz=

1.

( )

( mm) 5 2g

GHz

mm
FSR

n L




Roundtrip
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The Fabry-Perot Etalon

All-Pole

Response

Pole and Zero

Response

T/2

n
cav

Power complementary outputs:

Transmission=All-pole, Reflection=Pole/zero
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What about the time domain?

Periodic!

filter

h nb g

H b g

Time (nT)

Frequency (1/T)

Normalized

units

time: unit delay (T)

frequency: period=Free Spectral Range=1/T

time

h(t)=

h(nT)

 1

0 1b b z



Infinite impulse response (IIR) 

- feedback interference

- feedforward and feedback 

interference
Single-stage
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Impulse Response Classification

Finite impulse response (FIR) 

– feedforward interference 

As r0

IIRFIR
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Bragg Gratings (1-D Photonic Bandgaps)

Etched

Photoinducedncore

ncladding

n
cladding

n
1 L

T
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IIR filter: Transmission=All-pole, Reflection=Pole/zero
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Ideal vs. Real Filters

 
2
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Box-like Magnitude 

Response



 
2

H 
causality

stability

1. Zero at frequency points but not across a band

2. No infinitely steep transitions (Gibbs phenomenon) 

3. Hilbert transform relationship between Real & Imag parts

Realistic 

Specification

Proakis & Manolakis, Digital Signal Processing, 1996, p.618
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Frequency

Channel spacing

80%
spectral

efficiency

filter
response

P
o
w

e
r

40%10%

Signal bandwidth

Multiplexing Filters & Spectral Efficiency

G. Lenz
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Optical FIR Lattice Filters

t js c c jc s c z js s s z jc c s zx       
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Sum of All Paths Principle

Mach-Zehnder Interferometer

Two-Stage Lattice Filter

Analogous to birefringent crystal (Solc) filters
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Optical Phased-Array (FIR) Filters

Diffraction Grating

MirrorCollimating lens

Etalon

Line-focusing 

lens

Focusing lens
Optical fiber

Shirasaki, Opt. Lett., 1996.

Virtual Image Phased Array

Waveguide Grating Router

Dragone, 1991.

• Multi-stage (100’s)!

• Limited control

on h(n) coefficients
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IIR Bandpass Filter Architectures
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Arbitrary pole & zero locations 

- Jinguji, JLT, p. 1882, 1996

Single-pole filter

- Marcatili, BSTJ, p. 2103, 1969

Arbitrary pole locations

- Orta, et al., PTL, p.1447, 1995

- Madsen & Zhao, JLT, p. 437, 1996

Simplified pole/zero filter

- Madsen, PTL, 1998
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Use allpass filter decomposition to

realize optimal bandpass designs

efficiently!
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Comparison of Elliptic Filter to All-pole Filter

A
1
(z)

A
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(z)

=0.5 =0.5
bar

cross

Example:

FSR=40 nm (L=40 m for ng=1.45)

FWHM=4 nm, 30 dB crosstalk rejection

Transition Width

0.14 nm!

-40

-35

-30

-25

-20

-15

-10

-5

0

-0.5 -0.3 -0.1 0.1 0.3 0.5

normalized frequency

d
B

Rcross

Rbar

8th Order Elliptic Filter

Madsen, PTL, Aug. „98

Transition width is 10x smaller for optimal pole/zero than all-pole filter!
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Magnitude, Phase and Group Delay

Single Zero Single Pole

Pair to make

linear-phase!
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Minimum-Phase Filters

lnH  f  

Hilbert transform pair - one uniquely determines the other

“Sharp corners” in H   Nonlinear phase

Dispersion

Magnitude & phase satisfy Kramers-Kronig Relations
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Bandpass 

filter

cutoff=0.1

Comparison of FIR and IIR Bandpass Filters

Nonlinear-phase response

of IIR filter results in …

Feedback can produce sharp magnitude responses 

with only a few stages, but watch out for dispersion!



39

Input pulse width >> filter unit delay

Time

Domain

Frequency

Domain
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Filter unit delay >> Input pulse width

Time

Domain

Frequency

Domain
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Optical Allpass Filters

Gires-Tournois Interferometer

• Periodic frequency response (Free Spectral Range = one period)

• For a lossless filter, magnitude response = 1 (allpass!)

Ring Resonator

1 1 0 1

L / 2

f
L=2R

R

 j 

j k

  1 k
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Filter unit delay : Input pulse width

Allpass Filter Animation

Short

pulse

Long

pulse

Interpulse

filter

Intrapulse

filter
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Allpass Filter - Z Transform

A e
j a f a f
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Phase and Group Delay Response

Group Delay
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Gaussian Pulse Transmission

r=0.8 r=0.92tfwhm=10
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Allpass Filter Magnitude Response

• For a lossless filter, magnitude response = 1 (allpass!)

• With loss, magnitude response depends on 
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5th-Order Elliptic Filter

Magnitude Response

Group Delay with & without

Allpass Filter Compensator

Elliptic Filter with Dispersion Compensation

Typically optimize for desired response (e.g. magnitude, 

delay), trading off with complexity (#stages)
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Optical Filter Theory Concepts

 Lumped element, normalized Z-transform design 

easily calculate magnitude and phase response

 FIR versus IIR filters (weak IIR  FIR)

 Min-, max- and linear-phase (uniqueness, dispersion)

 Causality: Hilbert transform relates Re and Imag parts

min-phase: Hilbert transform relates mag and phase response

 Power complementary outputs if unitary (lossless)

 Filter synthesis nonlinear approximation problem
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Optical Filter Toolbox (I)

All-Zero (Mach-Zehnder)

Finite impulse response (FIR)

Feed-forward interference

DL

• symmetric dispersionless

• path length difference  FSR

normalized frequency

All-Pole (Fabry-Perot) 

Infinite impulse response (IIR)

Feed-back interference

R=L/2

L/2

• dispersive (all-pole=min-phase)

• large FSR  short feedback path!

normalized frequency
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Optical Filter Toolbox (II)


n-1t 

nt


nr

f
nr

f
nt

Feed-forward + feedback

Pole-Zero Filter

• Chebyshev, elliptic, Butterworth

• PMD compensation

Feed-forward + feedback

Allpass Filter



f

L=2RR

• phase engineering

• dispersion compensation

For an overview, see Madsen & Zhao, Optical Filter Design and Analysis, Wiley’99
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Optical Filter Technologies

In theory, there is no difference between 

theory and practice.  But, in practice, there is. 

-- Jan L.A. van de Snepscheut
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Si substrate

lower cladding

upper cladding

heater

core

Integrated Optical 

Waveguides: Cross-Section

cladcore

cladcore2
nn

nn
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Mach-Zehnder interferometer

Vary phase in one arm relative to the other

M. Earnshaw

Variable coupler

Variable attenuator

1x2 and 2x2 switch



54

“Fourier Filter” Low-dispersion Interleaver

T. Chiba, et. al., OECC 2000. Fourier Filter: Y. P. Li, et. al., Electron. Lett., 1995.

odd

even

all
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Index Contrast and Bend Radius
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Phase Shifter

R
FSR

c

n Lg



LC

Fiber-waveguide

coupling loss

For large FSRs, rings need 

hi-index contrast

coupler lengths 

must  shrink, too!

L R LC 2 2FSR

(GHz)

L

(mm)

8 25

12.5 16

25 8

50 4

100 2

Rings
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SEM of Gap

Higher Order Filters

5th Order

Micro-ring Resonator Filters

Tunable 5th Order ring filter

Little, OFC’03



Dispersion

(ps/nm)
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Quadratic

dispersion
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Delay
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Dispersion via Taylor Series Expansion
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Multi-Stage Group Delay

In Out

f
1

 1

f
N

 N...

Phase

Shifter

Madsen & Lenz, PTL ‘98

Nonlinear design optimization

• bandwidth utilization

• dispersion

• group delay ripple

Favors High Spectral Efficiency!

Theoretically lossless

Precisely tune two variables/stage

US Patent 6289151
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Continuous Dispersion Tuning:  Measurement Results

D=2% SiO2 waveguides

bend radius~1 mm

2 thermo-optic phase shifters/stage

4-stage

filter

0.4 dB/feedback path

0.8 dB/facet coupling loss to SSMF

(without optimization)

Madsen, et al, OFC’01, PD9



Filters in Optical Sensing
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FIR 
Filters

• Weak reflectors in Fabry Perot

• Sensing applications

IIR 
Filters

• Thin film etalons

• Ring resonators



Fiber Fabry-Perot Interferometer (FFPI)
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Pr: Reflected optical power, Pi: Incident optical power

f: round-trip optical phase shift, mirror reflectance R1, R2  1.

fcos2 2121 RRRR
P

P
R

i

r
FP 

)cos1(2 f R
P

P
R

i

r
FPIf R = R1 = R2, then

4
where 

nL







Applications of the FFPI
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Sensor 2 

Bearing Accelerometer 

Sensor 4 

Motor 

Accelerometer 

Test Set Up 

Direction of 

rotation 

Belt Axis 

Pivot Plate 



High-finesse (Narrow Bandwidth) Sensors
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Pound-Drever-Hall Method

Error 

signal

Phase 

modulated 

signal

Integrated ring 

with F~150

Phase 

response
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Bandwidth Processing Engines

Technology Bandwidth
Tunable or 

Adaptive

Digital Baseband complex alg

RF & 

Microwave
Octave(s) difficult

Optical Decades! Low to Hi-speed

10-100’s THz Sub- to 10’s GHz

Lots of potential!
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