

Passive Optical Components and Filtering Technologies

Christi Madsen Texas A&M University <u>cmadsen@tamu.edu</u> http://photonics.tamu.edu

Bruce Nyman

Outline

- Introduction
- Optical Filter Technologies
- Parameters and Measurements
- Component technologies
- Devices

Wavelength Division Multiplexed (WDM) System Architecture

EDFA Architecture

Optical Filters

What makes them work?

Interference

• (Most are coherent)

How do we use them?

Optical communications

- Wavelength division multiplexing
- Dispersion & distortion compensation
- Optical Sensors

Operations in Frequency & Time

Interferometers are Basic Optical Filters

Feedforward Interference

- Mach-Zehnder Interferometer
- Michelson Interferometer
- Diffraction grating
- Arrayed waveguide grating

Feedback Interference

- Ring Resonator
- Fabry-Perot etalon
- Fiber Bragg gratings
- Dielectric (thin film) filters

Optical Interference Filters

Split \rightarrow **Delay** \rightarrow **Combine**

Feedforward Interference

A Simple (Optical Waveguide) Splitter

Coherent Interference, so operations are on electric-field

Comparison to a Digital Filter

Splitter and Combiner Provide Weighting Function and $\Delta L \Leftrightarrow T$ is delay.

Calculating a Filter's Impact on a Signal

A filter is characterized by its **Frequency** (or Impulse) **Response**.

Fourier transform relates time and frequency domains for a linear time-invariant system

Magnitude and Phase Response are Important

Frequency Response of a Simple Delay Line

Consider a lossless optical delay line of length L:

$$E_{in} \rightarrow \bigcirc \rightarrow E_{in} e^{-j\beta L}$$

Delay-line frequency response $H(\omega) = e^{-j\beta L} = e^{-j\omega T}$ where $T = \frac{n_e L}{c}$

Phase Response $\Phi = -\omega T$

Linear with respect to frequency: Linear-phase response

How about Group Delay and Dispersion?

Group Delay
$$\tau_g(\omega) \equiv -\frac{d\Phi(\omega)}{d\omega}$$

The change in phase with frequency gives the delay.

Dispersion
$$D = \frac{d\tau_g}{d\lambda}$$
 (ps/nm)

If group delay is wavelength-dependent, then device/filter is Dispersive!

Frequency Response for a Mach Zehnder Interferometer

Frequency response can be obtained by inspection!

Mach-Zehnder Interferometer

Feed-forward interference (with identical couplers)

Feedforward Interference Filters

Symmetric Mach-Zehnder interferometer

Waveguide layout: Vary phase in one arm relative to the other

Variable coupler

Variable attenuator

1x2 and 2x2 switch

Arms the same length \rightarrow wavelength independent 18

Feedback Interference Filters

A denominator polynomial in z results due to feedback. The roots (called poles) tell us the transmission maxima!

A Ring Resonator Optical Filter

Two outputs:

- **1. Feed-back interference**
- 2. Feedforward & Feedback

dispersive (all-pole=min-phase)
large FSR ⇒ short feedback path!

$$FSR = \frac{c}{n_g L} \leftarrow \text{Roundtrip}$$
$$SR = \frac{300(GHz)}{n_g L(mm)} \text{ e.g. 100GHz} = \frac{300}{1.5 \times 2mm}$$

The Fabry-Perot Etalon

Response

Power complementary outputs: Transmission=All-pole, Reflection=Pole/zero

What about the time domain?

time: unit delay (T) frequency: period=Free Spectral Range=1/T

Impulse Response Classification

Finite impulse response (FIR) – feedforward interference

Infinite impulse response (IIR)

- feedback interference
- feedforward and feedback interference

Bragg Gratings (1-D Photonic Bandgaps)

IIR filter: Transmission=All-pole, Reflection=Pole/zero

Ideal vs. Real Filters

- 1. Zero at frequency points but not across a band
- 2. No infinitely steep transitions (Gibbs phenomenon)
- 3. Hilbert transform relationship between Real & Imag parts

Proakis & Manolakis, Digital Signal Processing, 1996, p.618

Multiplexing Filters & Spectral Efficiency

Optical FIR Lattice Filters

Analogous to birefringent crystal (Solc) filters

Optical Phased-Array (FIR) Filters

IIR Bandpass Filter Architectures

Comparison of Elliptic Filter to All-pole Filter

Transition width is 10x smaller for optimal pole/zero than all-pole filter!

Madsen, PTL, Aug. '982

Minimum-Phase Filters

Hilbert transform pair - one *uniquely* determines the other

Magnitude & phase satisfy Kramers-Kronig Relations

Comparison of FIR and IIR Bandpass Filters

Feedback can produce sharp magnitude responses with only a few stages, but watch out for dispersion!

Input pulse width >> filter unit delay

Filter unit delay >> Input pulse width

Optical Allpass Filters

- Periodic frequency response (Free Spectral Range = one period)
- For a <u>lossless</u> filter, magnitude response = 1 (allpass!)

Filter unit delay : Input pulse width

Allpass Filter - Z Transform

Optical Transfer Function

$$A(z) \equiv \frac{Y(z)}{X(z)} = \frac{\rho - z^{-1}}{1 - \rho z^{-1}} \xleftarrow{\text{zero}} \text{IIR}$$

Filter

Frequency Response $A(\omega) \equiv e^{j\Phi(\omega)}$

Phase and Group Delay Response

Gaussian Pulse Transmission

Allpass Filter Magnitude Response

- For a lossless filter, magnitude response = 1 (allpass!)
- With loss, magnitude response depends on ρ

Elliptic Filter with Dispersion Compensation

Typically optimize for desired response (e.g. magnitude, delay), trading off with complexity (#stages)

Optical Filter Theory Concepts

- Lumped element, normalized Z-transform design
 easily calculate magnitude and phase response
- \Rightarrow FIR versus IIR filters (weak IIR \Rightarrow FIR)
- ⇒ Min-, max- and linear-phase (uniqueness, dispersion)
- Causality: Hilbert transform relates Re and Imag parts min-phase: Hilbert transform relates mag and phase response
- ⇒ Power complementary outputs if unitary (lossless)
- \Rightarrow Filter synthesis \Rightarrow nonlinear approximation problem

Optical Filter Toolbox (I)

All-Zero (Mach-Zehnder) Finite impulse response (FIR) Feed-forward interference

symmetric ⇒ dispersionless
path length difference ⇒ FSR

All-Pole (Fabry-Perot) Infinite impulse response (IIR) Feed-back interference

Optical Filter Toolbox (II)

dispersion compensation

Feed-forward + feedback Pole-Zero Filter

Chebyshev, elliptic, Butterworth PMD compensation

For an overview, see Madsen & Zhao, Optical Filter Design and Analysis, Wiley'99 50

Optical Filter Technologies

Temperature

Dependence In theory, there is no difference between theory and practice. But, in practice, there is. -- Jan L.A. van de Snepscheut

Mach-Zehnder interferometer

Vary phase in one arm relative to the other

Variable coupler

Variable attenuator

1x2 and 2x2 switch

M. Earnshaw

"Fourier Filter" Low-dispersion Interleaver

T. Chiba, et. al., OECC 2000.

Fourier Filter: Y. P. Li, et. al., Electron. Lett., 1995. 54

Index Contrast and Bend Radius

For large FSRs, rings need hi-index contrast

Micro-ring Resonator Filters

SEM of Gap

Higher Order Filters

Order 5th

Tunable 5th Order µring filter

Dispersion via Taylor Series Expansion

Multi-Stage Group Delay

Nonlinear design optimization

- bandwidth utilization
- dispersion
- group delay ripple

Favors High Spectral Efficiency! Theoretically lossless Precisely tune two variables/stage

> Madsen & Lenz, PTL '98 US Patent 6289151

Continuous Dispersion Tuning: Measurement Results

Δ=2% SiO₂ waveguides
bend radius~1 mm
2 thermo-optic phase shifters/stage

0.4 dB/feedback path 0.8 dB/facet coupling loss to SSMF (without optimization)

Madsen, et al, OFC'01, PD9

Filters in Optical Sensing

Fiber Fabry-Perot Interferometer (FFPI)

P_r: Reflected optical power, P_i: Incident optical power ϕ : round-trip optical phase shift, mirror reflectance R₁, R₂ << 1.

If
$$R = R_1 = R_2$$
, then $R_{FP} = \frac{P_r}{P_i} = 2R(1 + \cos \phi)$

Applications of the FFPI

High-finesse (Narrow Bandwidth) Sensors

Bandwidth Processing Engines

References

- C. Doerr, "Planar Lightwave Devices for WDM," in *Optical Fiber Telecommunications IVA*, I. Kaminow and T. Li, Eds. New York: Academic Press, 2002, pp. 405-476.
- ⇒ G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal Dispersion of Optical Filters for WDM Systems," *IEEE Photon. Technol. Lett.*, vol. 10, no. 4, pp. 567-569, 1998.
- ➡ K. Jinguji and M. Kawachi, "Synthesis of Coherent Two-Port Lattice-Form Optical Delay-Line Circuit," *J. of Lightw. Technol.*, vol. 13, pp. 72-82, 1995.
- ⇒ B. Little, S. Chu, and Y. Kokubun, "Microring Resonator Arrays for VLSI Photonics," *IEEE Photon.*
- ⇒ *Technol. Lett.*, vol. 12, no. 3, pp. 323-325, 2000.
- ⇒ D. MacFarlane and E. Dowling, "Z-Domain Techniques in the Analysis of Fabry-Perot Etalons and Multilayer Structures," *J. Opt. Soc. Am. A*, vol. 11, no. 1, pp. 236-245, 1994.
- ▷ C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach. New York, NY: John Wiley, 1999.
- ⇒ J. Proakis and D. Manolakis, *Digital Signal Processing: Principles, Algorithms, and Applications*, 3rd. Upper Saddle River, NJ: Prentice Hall, 1996.
- ➡ M. Smit and C. Van Dam, "PHASAR-Based WDM-Devices: Principles, Design and Applications," *IEEE J. of Selected Topics in Quant. Electron.*, vol. 2, no. 2, pp. 236-250, 1996.